1
|
Wu Z, Yang P, Li Q, Xiao W, Li Z, Xu G, Liu F, Jia B, Ma T, Feng S, Wang L. Microwave Synthesis of Pt Clusters on Black TiO 2 with Abundant Oxygen Vacancies for Efficient Acidic Electrocatalytic Hydrogen Evolution. Angew Chem Int Ed Engl 2023; 62:e202300406. [PMID: 36754865 DOI: 10.1002/anie.202300406] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/10/2023]
Abstract
Oxygen vacancies-enriched black TiO2 is one promising support for enhancing hydrogen evolution reaction (HER). Herein, oxygen vacancies enriched black TiO2 supported sub-nanometer Pt clusters (Pt/TiO2 -OV ) with metal support interactions is designed through solvent-free microwave and following low-temperature electroless approach for the first time. High-temperature and strong reductants are not required and then can avoid the aggregation of decorated Pt species. Experimental and theoretical calculation verify that the created oxygen vacancies and Pt clusters exhibit synergistic effects for optimizing the reaction kinetics. Based on it, Pt/TiO2 -OV presents remarkable electrocatalytic performance with 18 mV to achieve 10 mA cm-2 coupled with small Tafel slope of 12 mV dec-1 . This work provides quick synthetic strategy for preparing black titanium dioxide based nanomaterials.
Collapse
Affiliation(s)
- Zexing Wu
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Pengfei Yang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Qichang Li
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Weiping Xiao
- College of Science, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Zhenjiang Li
- College of Materials Science and Engineering, Key Laboratory of Polymer Material Advanced Manufacturing's Technology of Shandong Province, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Guangrui Xu
- College of Materials Science and Engineering, Key Laboratory of Polymer Material Advanced Manufacturing's Technology of Shandong Province, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Fusheng Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Baohua Jia
- School of Science, STEM College, RMIT University, Australia
| | - Tianyi Ma
- School of Science, STEM College, RMIT University, Australia
| | - Shouhua Feng
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| |
Collapse
|
2
|
Zhang C, Xie C, Gao Y, Tao X, Ding C, Fan F, Jiang HL. Charge Separation by Creating Band Bending in Metal-Organic Frameworks for Improved Photocatalytic Hydrogen Evolution. Angew Chem Int Ed Engl 2022; 61:e202204108. [PMID: 35522460 DOI: 10.1002/anie.202204108] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Indexed: 11/09/2022]
Abstract
Metal-organic frameworks (MOFs) have been intensively studied as a class of semiconductor-like materials in photocatalysis. However, band bending, which plays a crucial role in semiconductor photocatalysis, has not yet been demonstrated in MOF photocatalysts. Herein, a representative MOF, MIL-125-NH2 , is integrated with the metal oxides (MoO3 and V2 O5 ) that feature appropriate work functions and energy levels to afford the corresponding MOF composites. Surface photovoltage results demonstrate band bending in the MOF composites, which gives rise to the built-in electric field of MIL-125-NH2 , boosting the charge separation. As a result, the MOF composites present 56 and 42 times higher activities, respectively, compared to the pristine MOF for photocatalytic H2 production. Upon depositing Pt onto the MOF, ∼6 times higher activity is achieved. This work illustrates band bending of MOFs for the first time, supporting their semiconductor-like nature, which would greatly promote MOF photocatalysis.
Collapse
Affiliation(s)
- Chenxi Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Chenfan Xie
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yuying Gao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
| | - Xiaoping Tao
- Research Initiative for Supra-Materials, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano, 380-8553, Japan
| | - Chunmei Ding
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
| | - Fengtao Fan
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
| | - Hai-Long Jiang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
3
|
Zhu H, Fu X, Zhou Z. 3D/2D Heterojunction of CeO 2/Ultrathin MXene Nanosheets for Photocatalytic Hydrogen Production. ACS OMEGA 2022; 7:21684-21693. [PMID: 35785314 PMCID: PMC9245096 DOI: 10.1021/acsomega.2c01674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Two-dimensional (2D) nanomaterials benefit from the high specific surface area, unique surface properties, and quantum size effects, which have attracted widespread scientific attention. MXenes add many members to the 2D material family, mainly metal conductors, most of which are dielectrics, semiconductors, or semimetals. With excellent electron mobility, beneficial to electron-hole separation, and large functional groups that can be tightly coupled with other materials, MXenes have broad application prospects in photocatalysis. Meanwhile, the application of CeO2-based materials in organic catalysis, photocatalytic water splitting, and photodegradation of organic pollutants has been extensively explored, and studies have found that CeO2-based materials show good photocatalytic performance. In view of this, we synthesized regular octahedral CeO2 with a homojunction in one step by a hydrothermal method and compounded it with ultrathin 2D material MXene, which exhibited fast carrier migration efficiency and a good interfacial effect, making the material show excellent photocatalytic activity. The results showed that the photocatalytic H2 evolution performance of the MXene/CeO2 heterojunction was significantly improved. In this study, a low-cost catalyst with high photocatalytic activity was prepared, presenting a new research idea for achieving a combined 3D/2D photocatalytic system.
Collapse
Affiliation(s)
- Hongrui Zhu
- College
of Chemistry and Chemical Engineering, Lanzhou
Jiaotong University, Lanzhou, Gansu 730070, P. R. China
| | - Xumei Fu
- College
of Chemistry and Chemical Engineering, Lanzhou
Jiaotong University, Lanzhou, Gansu 730070, P. R. China
| | - Zhiqiang Zhou
- College
of Chemistry and Chemical Engineering, Xi’an
Shiyou University, Xi’an, Shaanxi 3710065, P. R. China
| |
Collapse
|
4
|
Lan K, Wei Q, Zhao D. Versatile Synthesis of Mesoporous Crystalline TiO 2 Materials by Monomicelle Assembly. Angew Chem Int Ed Engl 2022; 61:e202200777. [PMID: 35194915 DOI: 10.1002/anie.202200777] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Indexed: 11/10/2022]
Abstract
Mesoscale TiO2 structures have realized many technological applications-ranging from catalysis and biomedicine to energy storage and conversion-because of their large mesoporosities offering desirable accessibility and mass transport. Tailoring mesoporous TiO2 structures with novel mesoscopic and microscopic configurations is envisaged to offer ample opportunities for further applications. In this Review, we explain how to synthesize novel mesoporous TiO2 materials and present recent examples. An emphasis is placed on a "monomicelle assembly" strategy as an emerging and powerful approach to direct the formation of mesostructured TiO2 with precise control over its structural orientations and architectures. Furthermore, typical examples of mesoporous TiO2 for applications in batteries and photocatalysis are highlighted. The Review ends with an outlook towards the synthesis of mesoporous TiO2 with tailored architectures by self-assembly, which could pave the way for developing advanced energy conversion and storage devices.
Collapse
Affiliation(s)
- Kun Lan
- Laboratory of Advanced Materials, Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, P. R. China
| | - Qiulong Wei
- Department of Materials Science and Engineering, Fujian Key Laboratory of Materials Genome, Xiamen Key Laboratory of High Performance Metals and Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Dongyuan Zhao
- Laboratory of Advanced Materials, Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
5
|
Sun QM, Xu JJ, Tao FF, Ye W, Zhou C, He JH, Lu JM. Boosted Inner Surface Charge Transfer in Perovskite Nanodots@Mesoporous Titania Frameworks for Efficient and Selective Photocatalytic CO 2 Reduction to Methane. Angew Chem Int Ed Engl 2022; 61:e202200872. [PMID: 35191168 DOI: 10.1002/anie.202200872] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Indexed: 01/21/2023]
Abstract
Exploring high-efficiency and stable halide perovskite-based photocatalysts for the selective reduction of CO2 to methane is a challenge because of the intrinsic photo- and chemical instability of halide perovskites. In this study, halide perovskites (Cs3 Bi2 Br9 and Cs2 AgBiBr6 ) were grown in situ in mesoporous TiO2 frameworks for an efficient CO2 reduction. Benchmarked CH4 production rates of 32.9 and 24.2 μmol g-1 h-1 with selectivities of 88.7 % and 84.2 %, were achieved, respectively, which are better than most reported halide perovskite photocatalysts. Focused ion-beam sliced-imaging techniques were used to directly image the hyperdispersed perovskite nanodots confined in mesopores with tunable sizes ranging from 3.8 to 9.9 nm. In situ X-ray photoelectronic spectroscopy and Kelvin probe force microscopy showed that the built-in electric field between the perovskite nanodots and mesoporous titania channels efficiently promoted photo-induced charge transfer. Density functional theory calculations indicate that the high methane selectivity was attributed to the Bi-adsorption-mediated hydrogenation of *CO to *HCO that dominates CO desorption.
Collapse
Affiliation(s)
- Qi-Meng Sun
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, P. R. China
| | - Jing-Jing Xu
- Department of Chemistry and Chemical Engineering, Shaoxing University, Zhejiang, 312000, P. R. China
| | - Fei-Fei Tao
- Department of Chemistry and Chemical Engineering, Shaoxing University, Zhejiang, 312000, P. R. China
| | - Wen Ye
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, P. R. China
| | - Chang Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, P. R. China
| | - Jing-Hui He
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, P. R. China
| | - Jian-Mei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
6
|
Zhang C, Xie C, Gao Y, Tao X, Ding C, Fan F, Jiang HL. Charge Separation by Creating Band Bending in Metal‐Organic Frameworks for Improved Photocatalytic Hydrogen Evolution. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204108] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chenxi Zhang
- USTC: University of Science and Technology of China Chemistry CHINA
| | - Chenfan Xie
- USTC: University of Science and Technology of China Chemistry CHINA
| | - Yuying Gao
- DICP: Chinese Academy of Sciences Dalian Institute of Chemical Physics State Key Laboratory of Catalysis CHINA
| | - Xiaoping Tao
- Shinshu University Graduate School of Engineering Faculty of Engineering: Shinshu Daigaku Chemistry CHINA
| | - Chunmei Ding
- DICP: Chinese Academy of Sciences Dalian Institute of Chemical Physics State Key Laboratory of Catalysis CHINA
| | - Fengtao Fan
- DICP: Chinese Academy of Sciences Dalian Institute of Chemical Physics State Key Laboratory of Catalysis CHINA
| | - Hai-Long Jiang
- University of Science and Technology of China (USTC) Department of Chemistry No. 96 Jinzhai Road 230026 Hefei CHINA
| |
Collapse
|
7
|
Lan K, Wei Q, Zhao D. Versatile Synthesis of Mesoporous Crystalline TiO
2
Materials by Monomicelle Assembly. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kun Lan
- Laboratory of Advanced Materials Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University Shanghai 200433 P. R. China
| | - Qiulong Wei
- Department of Materials Science and Engineering Fujian Key Laboratory of Materials Genome Xiamen Key Laboratory of High Performance Metals and Materials College of Materials Xiamen University Xiamen 361005 P. R. China
| | - Dongyuan Zhao
- Laboratory of Advanced Materials Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University Shanghai 200433 P. R. China
| |
Collapse
|
8
|
Sun Q, Xu J, Tao F, Ye W, Zhou C, He J, Lu J. Boosted Inner Surface Charge Transfer in Perovskite Nanodots@Mesoporous Titania Frameworks for Efficient and Selective Photocatalytic CO
2
Reduction to Methane. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qi‐Meng Sun
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology National United Engineering Laboratory of Functionalized Environmental Adsorption Materials Soochow University Suzhou 215123 P. R. China
| | - Jing‐Jing Xu
- Department of Chemistry and Chemical Engineering Shaoxing University Zhejiang 312000 P. R. China
| | - Fei‐Fei Tao
- Department of Chemistry and Chemical Engineering Shaoxing University Zhejiang 312000 P. R. China
| | - Wen Ye
- State Key Laboratory of Radiation Medicine and Protection Collaborative Innovation Center of Suzhou Nano Science and Technology National United Engineering Laboratory of Functionalized Environmental Adsorption Materials Soochow University Suzhou 215123 P. R. China
| | - Chang Zhou
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology National United Engineering Laboratory of Functionalized Environmental Adsorption Materials Soochow University Suzhou 215123 P. R. China
| | - Jing‐Hui He
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology National United Engineering Laboratory of Functionalized Environmental Adsorption Materials Soochow University Suzhou 215123 P. R. China
| | - Jian‐Mei Lu
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology National United Engineering Laboratory of Functionalized Environmental Adsorption Materials Soochow University Suzhou 215123 P. R. China
| |
Collapse
|
9
|
Liu D, Song X, Yi W, Li Y, Kong Q, Bai H, Zou M, Xi G. General Microwave Route to Single-Crystal Porous Transition Metal Nitrides for Highly Sensitive and Stable Raman Scattering Substrates. NANO LETTERS 2021; 21:7724-7731. [PMID: 34477392 DOI: 10.1021/acs.nanolett.1c02541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The synthesis of metallic transition metal nitrides (TMNs) has traditionally been performed under harsh conditions, which makes it difficult to prepare TMNs with high surface area and porosity due to the grain sintering. Herein, we report a general and rapid (30 s) microwave synthesis method for preparing TMNs with high specific surface area (122.6-141.7 m2 g-1) and porosity (0.29-0.34 cm3 g-1). Novel single-crystal porous WN, Mo2N, and V2N are first prepared by this method, which exhibits strong surface plasmon resonance, photothermal conversion, and surface-enhanced Raman scattering effects. Different from the conventional low-temperature microwave absorbing media such as water and polymers, as new concept absorbing media, hydrated metal oxides and metallic metal oxides are found to have a remarkable high-temperature microwave heating effect and play key roles in the formation of TMNs. The current research results provide a new-concept microwave method for preparing high lattice energy compounds with high specific surface.
Collapse
Affiliation(s)
- Damin Liu
- Institute of Industrial and Consumer Product Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, P. R. China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Xiaoyu Song
- Institute of Industrial and Consumer Product Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, P. R. China
| | - Wencai Yi
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yahui Li
- Institute of Industrial and Consumer Product Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, P. R. China
| | - Qinghong Kong
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Hua Bai
- Institute of Industrial and Consumer Product Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, P. R. China
| | - Mingqiang Zou
- Institute of Industrial and Consumer Product Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, P. R. China
| | - Guangcheng Xi
- Institute of Industrial and Consumer Product Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, P. R. China
| |
Collapse
|