1
|
Feng J, Yang SP, Shao YQ, Sun YY, He ZL, Wang Y, Zhai YN, Dong YB. Covalent Organic Framework-Based Nanomotor for Multimodal Cancer Photo-Theranostics. Adv Healthc Mater 2023; 12:e2301645. [PMID: 37557883 DOI: 10.1002/adhm.202301645] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/21/2023] [Indexed: 08/11/2023]
Abstract
Developing efficient integrated diagnosis and treatment agents based on fuel-free self-movement nanomotors remains challenging in antitumor therapy. In this study, a covalent organic framework (COF)-based biomimetic nanomotor composed of polypyrrole (PPy) core, porphyrin-COF shell, and HCT116 cancer cell membrane coating is reported. Under near-infrared (NIR) light irradiation, the obtained mPPy@COF-Por can overcome Brownian motion and achieves directional motion through self-thermophoretic force generated from the PPy core. The HCT116 cancer cell membrane coating enables the nanomotor to selectively recognize the source cell lines and reduces the bio-adhesion of mPPy@COF-Por in a biological medium, endowing with this NIR light-powered nanomotor good mobility. More importantly, such multifunctional integration allows the COF-based nanomotor to be a powerful nanoagent for cancer treatment, and the high infrared thermal imaging/photoacoustic imaging/fluorescence trimodal imaging-guided combined photothermal/photodynamic therapeutic effect on HCT116 tumor cell is successfully achieved. The results offer considerable promise for the development of COF nanomotors with integrated imaging/therapy modalities in biomedical applications.
Collapse
Affiliation(s)
- Jie Feng
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P. R. China
| | - Shi-Peng Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P. R. China
| | - Yu-Qing Shao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P. R. China
| | - Yun-Yu Sun
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P. R. China
| | - Zi-Liang He
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P. R. China
| | - Ying Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P. R. China
| | - Ya-Nan Zhai
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P. R. China
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P. R. China
| |
Collapse
|
2
|
Wang D, Wang X, Zhou S, Gu P, Zhu X, Wang C, Zhang Q. Evolution of BODIPY as triplet photosensitizers from homogeneous to heterogeneous: The strategies of functionalization to various forms and their recent applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
3
|
Wang C, Wang X, Zhang W, Ma D, Li F, Jia R, Shi M, Wang Y, Ma G, Wei W. Shielding Ferritin with a Biomineralized Shell Enables Efficient Modulation of Tumor Microenvironment and Targeted Delivery of Diverse Therapeutic Agents. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107150. [PMID: 34897858 DOI: 10.1002/adma.202107150] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/27/2021] [Indexed: 05/23/2023]
Abstract
Ferritin (Fn) is considered a promising carrier for targeted delivery to tumors, but the successful application in vivo has not been fully achieved yet. Herein, strong evidence is provided that the Fn receptor is expressed in liver tissues, resulting in an intercept effect in regards to tumor delivery. Building on these observations, a biomineralization technology is rationally designed to shield Fn using a calcium phosphate (CaP) shell, which can improve the delivery performance by reducing Fn interception in the liver while re-exposing it in acidic tumors. Moreover, the selective dissolution of the CaP shell not only neutralizes the acidic microenvironment but also induces the intratumoral immunomodulation and calcification. Upon multiple cell line and patient-derived xenografts, it is demonstrated that the elaboration of the highly flexible Fn@CaP chassis by loading a chemotherapeutic drug into the Fn cavity confers potent antitumor effects, and additionally encapsulating a photosensitizer into the outer shell enables a combined chemo-photothermal therapy for complete suppression of advanced tumors. Altogether, these results support Fn@CaP as a new nanoplatform for efficient modulation of the tumor microenvironment and targeted delivery of diverse therapeutic agents.
Collapse
Affiliation(s)
- Changlong Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaojun Wang
- Department of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518039, P. R. China
| | - Wei Zhang
- Beijing National Laboratory for Molecular Engineering, College of Chemistry and Molecular Engineering and College of Engineering and BIC-ESAT, Peking University, Beijing, 100871, P. R. China
| | - Ding Ma
- Beijing National Laboratory for Molecular Engineering, College of Chemistry and Molecular Engineering and College of Engineering and BIC-ESAT, Peking University, Beijing, 100871, P. R. China
| | - Feng Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Rongrong Jia
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, P. R. China
| | - Min Shi
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, P. R. China
| | - Yugang Wang
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
4
|
Lee D, Ha J, Kang M, Yang Z, Jiang W, Kim BYS. Strategies of Perturbing Ion Homeostasis for Cancer Therapy. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202100189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- DaeYong Lee
- Department of Neurosurgery The University of Texas MD Anderson Cancer Center Houston TX 77030 USA
| | - JongHoon Ha
- Department of Radiation Oncology The University of Texas MD Anderson Cancer Center Houston TX 77030 USA
| | - Minjeong Kang
- Department of Radiation Oncology The University of Texas MD Anderson Cancer Center Houston TX 77030 USA
| | - Zhaogang Yang
- Department of Radiation Oncology The University of Texas MD Anderson Cancer Center Houston TX 77030 USA
| | - Wen Jiang
- Department of Radiation Oncology The University of Texas MD Anderson Cancer Center Houston TX 77030 USA
| | - Betty Y. S. Kim
- Department of Neurosurgery The University of Texas MD Anderson Cancer Center Houston TX 77030 USA
| |
Collapse
|
5
|
Bagheri AR, Li C, Zhang X, Zhou X, Aramesh N, Zhou H, Jia J. Recent advances in covalent organic frameworks for cancer diagnosis and therapy. Biomater Sci 2021; 9:5745-5761. [PMID: 34318797 DOI: 10.1039/d1bm00960e] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In recent years, the number of patients diagnosed with cancer has been soaring. Therefore, the design, development, and implementation of new approaches for the diagnosis and therapy of different types of cancers have attracted an increasing amount of attention. To date, different methods have been used for cancer diagnosis and therapy with main drawbacks in terms of severe side effects, e.g., damage to healthy cells, development of drug resistance and tumor recurrence. Therefore, there is an urgent need for the introduction and application of innovative methods. Covalent organic frameworks (COFs) are versatile materials with excellent properties in terms of biocompatibility, porous and crystalline structure, and easy functionalization. The porous structure and organic monomers in COFs allow them to load different therapeutic drugs and/or functional species efficiently. These promising properties make COFs ideal candidates for medical application, especially in cancer diagnosis and therapy. To date, many studies have focused on the design and synthesis of novel COFs while their application as diagnostic and therapeutic materials remains less understood. In this review, different synthesis and functionalization approaches of COFs were summarized. In particular, cancer diagnosis and therapy based on COFs were investigated and the advantages and limitations of each method were discussed. Most importantly, the mechanism for cancer therapy of COFs and fundamental challenges and perspectives for the application of COFs in cancer theranostics were assessed.
Collapse
Affiliation(s)
- Ahmad Reza Bagheri
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | | | | | | | | | | | | |
Collapse
|
6
|
Liao C, Liu S. Tuning the physicochemical properties of reticular covalent organic frameworks (COFs) for biomedical applications. J Mater Chem B 2021; 9:6116-6128. [PMID: 34278394 DOI: 10.1039/d1tb01124c] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Since the first report by Yaghi's group in 2005, research enthusiasm has been increasingly raised to synthesize diverse crystalline porous materials as -B-O-, -C-N-, -C-C-, and -C-O- linkage-based COFs. Recently, the biomedical applications of COFs have become more and more attractive in biomedical applications, including drug delivery, bioimaging, biosensing, antimicrobial, and therapeutic applications, as these materials bear well-defined crystalline porous structures and well-customized functionalities. However, the clinical translation of these research findings is challenging due to the formidable hindrances for in vivo use, such as low biocompatibility, poor selectivity, and long bio-persistence. Some attempts have raised a promising solution towards these obstacles by tailored engineering the functionalities of COFs. To speed up the clinical translations of COFs, a short review of principles and strategies to tune the physicochemical properties of COFs is timely and necessary. In this review, we summarized the biomedical utilities of COFs and discussed the related key physicochemical properties. To improve the performances of COFs in biomedical uses, we propose approaches for the tailored functionalization of COFs, including large-scale manufacture, standardization in nanomedicines, enhancing targeting efficacy, maintaining predesigned functions upon transformations, and manipulation of multifunctional COFs. We expect that this minireview strengthens the fundamental understandings of property-bioactivity relationships of COFs and provides insights for the rational design of their high-order reticular structures.
Collapse
Affiliation(s)
- Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | | |
Collapse
|
7
|
Jo H, Kitao T, Kimura A, Itoh Y, Aida T, Okuro K. Bio-adhesive Nanoporous Module: Toward Autonomous Gating. Angew Chem Int Ed Engl 2021; 60:8932-8937. [PMID: 33528083 DOI: 10.1002/anie.202017117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Indexed: 12/15/2022]
Abstract
Here we report a bio-adhesive porous organic module (Glue COF) composed of hexagonally packed 1D nanopores based on a covalent organic framework. The nanopores are densely decorated with guanidinium ion (Gu+ ) pendants capable of forming salt bridges with oxyanionic species. Glue COF strongly adheres to biopolymers through multivalent salt-bridging interactions with their ubiquitous oxyanionic species. By taking advantage of its strong bio-adhesive nature, we succeeded in creating a gate that possibly opens the nanopores through a selective interaction with a reporter chemical and releases guest molecules. We chose calmodulin (CaM) as a gating component that can stably entrap a loaded guest, sulforhodamine B (SRB), within the nanopores (CaM COF⊃SRB). CaM is known to change its conformation on binding with Ca2+ ions. We confirmed that mixing CaM COF⊃SRB with Ca2+ resulted in the release of SRB from the nanopores, whereas the use of weakly binding Mg2+ ions resulted in a much slower release of SRB.
Collapse
Affiliation(s)
- Hyuna Jo
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takashi Kitao
- Department of Advanced Materials Science, Graduate School of Frontier Sciences and Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Chiba, 227-8561, Japan
| | - Ayumi Kimura
- Institute of Engineering Innovation, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yoshimitsu Itoh
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takuzo Aida
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Kou Okuro
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
8
|
Jo H, Kitao T, Kimura A, Itoh Y, Aida T, Okuro K. Bio‐adhesive Nanoporous Module: Toward Autonomous Gating. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hyuna Jo
- Department of Chemistry and Biotechnology School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Takashi Kitao
- Department of Advanced Materials Science Graduate School of Frontier Sciences and Department of Applied Chemistry Graduate School of Engineering The University of Tokyo Chiba 227-8561 Japan
| | - Ayumi Kimura
- Institute of Engineering Innovation The University of Tokyo 2-11-16 Yayoi, Bunkyo-ku Tokyo 113-8656 Japan
| | - Yoshimitsu Itoh
- Department of Chemistry and Biotechnology School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Takuzo Aida
- Department of Chemistry and Biotechnology School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
- RIKEN Center for Emergent Matter Science 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Kou Okuro
- Department of Chemistry and Biotechnology School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
- Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
| |
Collapse
|
9
|
Machado TF, Serra MES, Murtinho D, Valente AJM, Naushad M. Covalent Organic Frameworks: Synthesis, Properties and Applications-An Overview. Polymers (Basel) 2021; 13:970. [PMID: 33809960 PMCID: PMC8004293 DOI: 10.3390/polym13060970] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/25/2022] Open
Abstract
Covalent Organic Frameworks (COFs) are an exciting new class of microporous polymers with unprecedented properties in organic material chemistry. They are generally built from rigid, geometrically defined organic building blocks resulting in robust, covalently bonded crystalline networks that extend in two or three dimensions. By strategically combining monomers with specific structures and properties, synthesized COF materials can be fine-tuned and controlled at the atomic level, with unparalleled precision on intrapore chemical environment; moreover, the unusually high pore accessibility allows for easy post-synthetic pore wall modification after the COF is synthesized. Overall, COFs combine high, permanent porosity and surface area with high thermal and chemical stability, crystallinity and customizability, making them ideal candidates for a myriad of promising new solutions in a vast number of scientific fields, with widely varying applications such as gas adsorption and storage, pollutant removal, degradation and separation, advanced filtration, heterogeneous catalysis, chemical sensing, biomedical applications, energy storage and production and a vast array of optoelectronic solutions. This review attempts to give a brief insight on COF history, the overall strategies and techniques for rational COF synthesis and post-synthetic functionalization, as well as a glance at the exponentially growing field of COF research, summarizing their main properties and introducing the numerous technological and industrial state of the art applications, with noteworthy examples found in the literature.
Collapse
Affiliation(s)
- Tiago F. Machado
- University of Coimbra, CQC, Department of Chemistry, 3004-535 Coimbra, Portugal; (T.F.M.); (M.E.S.S.); (D.M.)
| | - M. Elisa Silva Serra
- University of Coimbra, CQC, Department of Chemistry, 3004-535 Coimbra, Portugal; (T.F.M.); (M.E.S.S.); (D.M.)
| | - Dina Murtinho
- University of Coimbra, CQC, Department of Chemistry, 3004-535 Coimbra, Portugal; (T.F.M.); (M.E.S.S.); (D.M.)
| | - Artur J. M. Valente
- University of Coimbra, CQC, Department of Chemistry, 3004-535 Coimbra, Portugal; (T.F.M.); (M.E.S.S.); (D.M.)
| | - Mu. Naushad
- Advanced Materials Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
- Yonsei Frontier Lab, Yonsei University, Seoul 03722, Korea
| |
Collapse
|