1
|
Sun G, Liu H, Wang X, Zhang W, Miao W, Luo Q, Gao B, Hu J. Palladium-Catalyzed Defluorinative Coupling of Difluoroalkenes and Aryl Boronic Acids for Ketone Synthesis. Angew Chem Int Ed Engl 2023; 62:e202213646. [PMID: 36315428 DOI: 10.1002/anie.202213646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 11/06/2022]
Abstract
The transition-metal-catalyzed carbonylation reaction is a useful approach for ketone synthesis. However, it is often problematic to use exogenous carbonyl reagents, such as gaseous carbon monoxide. In this manuscript, we report a novel palladium-catalyzed coupling reaction of gem-difluoroalkenes and aryl boronic acids that yields bioactive indane-type ketones with an all-carbon α-quaternary center. Characterization and stoichiometric reactions of the key intermediates RCF2 PdII support a water-induced defluorination and cross-coupling cascade mechanism. The vinyl difluoromethylene motif serves as an in situ carbonyl precursor which is unprecedented in transition-metal-catalyzed coupling reactions. It is expected to raise broad research interest from the perspectives of ketone synthesis, fluoroalkene functionalization, and rational design of new synthetic protocols based on the unique reactivity of difluoroalkyl palladium(II) species.
Collapse
Affiliation(s)
- Guangwu Sun
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, Hunan 410082, China
| | - Herui Liu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, Hunan 410082, China
| | - Xiu Wang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Wenbo Zhang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, Hunan 410082, China
| | - Wenjun Miao
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Qinyu Luo
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Bing Gao
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, Hunan 410082, China
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| |
Collapse
|
2
|
Remete AM, Nonn M, Kiss L. Palladium‐Catalyzed Arylfluorination of Alkenes: A Powerful New Approach to Organofluorine Compounds. Chemistry 2022; 28:e202202076. [DOI: 10.1002/chem.202202076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Attila Márió Remete
- Institute of Pharmaceutical Chemistry University of Szeged 6720 Szeged, Eötvös u. 6 Hungary
| | - Melinda Nonn
- MTA TTK Lendület Artificial Transporter Research Group Institute of Materials and Environmental Chemistry Research Center for Natural Sciences Hungarian Academy of Sciences Magyar Tudósok krt. 2 1117 Budapest Hungary
| | - Loránd Kiss
- Institute of Organic Chemistry Stereochemistry Research Group Research Centre for Natural Sciences 1117 Budapest Magyar tudósok krt. 2 Hungary
| |
Collapse
|
3
|
Zhang JQ, Liu J, Hu D, Song J, Zhu G, Ren H. Rapid and Simple Access to α-(Hetero)arylacetonitriles from Gem-Difluoroalkenes. Org Lett 2022; 24:786-790. [PMID: 34989584 DOI: 10.1021/acs.orglett.1c04336] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A scalable cyanation of gem-difluoroalkenes to (hetero)arylacetonitrile derivatives was developed. This strategy features mild reaction conditions, excellent yields, wide substrate scope, and broad functional group tolerance. Significantly, in this reaction, aqueous ammonia offers a "N" source for the "CN" reagent and entirely avoids the use of toxic cyanating reagents or metal catalysis. Hence, we provide a green and alternative method for the synthesis of arylacetonitriles.
Collapse
Affiliation(s)
- Jun-Qi Zhang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China
| | - Jiayue Liu
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China
| | - Dandan Hu
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China
| | - Jinyu Song
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China
| | - Guorong Zhu
- Zhejiang Tianyu Pharmaceutical Co., Lddd., Jiangkou Development Zone, Huangyan 318020, Zhejiang, P. R. China
| | - Hongjun Ren
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China
| |
Collapse
|
4
|
Bai D, Wu F, Chang L, Wang M, Wu H, Chang J. Highly Regio‐ and Enantioselective Hydrosilylation of
gem
‐Difluoroalkenes by Nickel Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Dachang Bai
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 P.R. China
| | - Fen Wu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Lingna Chang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Manman Wang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Hao Wu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Junbiao Chang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| |
Collapse
|
5
|
Bai D, Wu F, Chang L, Wang M, Wu H, Chang J. Highly Regio- and Enantioselective Hydrosilylation of gem-Difluoroalkenes via Nickel Catalysis. Angew Chem Int Ed Engl 2021; 61:e202114918. [PMID: 34957676 DOI: 10.1002/anie.202114918] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Indexed: 11/10/2022]
Abstract
The synthesis of small organic molecules with a difluoromethylated stereocenter is particularly attractive in drug discovery. Herein, we developed an efficient method for the direct generation of difluoromethylated stereocenters through Ni(0)-catalyzed regio - and enantioselective hydrosilylation of gem -difluoroalkenes. The reaction also represents the enantioselective construction of carbon(sp 3 )-silicon bonds with nickel catalysis, which provides an atom- and step-economical synthesis route of high-value optically active α-difluoromethylsilanes. This protocol features with readily available starting materials and commercial chiral catalysis, broad substrates spanning a range of functional groups with high yield (up to 99% yield) and excellent enantioselectivity (up to 96% ee). The enantioenriched products undergo a variety of stereospecific transformations. Preliminary mechanistic studies were performed.
Collapse
Affiliation(s)
- Dachang Bai
- Henan Normal University, school of chemistry and chemical engineering, 46# jianshe road, 456007, xinxiang, CHINA
| | - Fen Wu
- Henan Normal University, School of Chemistry and Chemical Engineering, CHINA
| | - Lingna Chang
- Henan Normal University, School of Chemistry and Chemical Engineering, CHINA
| | - Manman Wang
- Henan Normal University, School of Chemistry and Chemical Engineering, CHINA
| | - Hao Wu
- Henan Normal University, School of Chemistry and Chemical Engineering, CHINA
| | - Junbiao Chang
- Henan Normal University, School of Chemistry and Chemical Engineering, CHINA
| |
Collapse
|
6
|
Liu J, Yu L, Zheng C, Zhao G. Asymmetric Synthesis of 2,2-Difluorotetrahydrofurans through Palladium-Catalyzed Formal [3+2] Cycloaddition. Angew Chem Int Ed Engl 2021; 60:23641-23645. [PMID: 34494347 DOI: 10.1002/anie.202111376] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Indexed: 12/21/2022]
Abstract
The asymmetric synthesis of 2,2-difluorinated tetrahydrofurans was accomplished via enantioselective formal [3+2] cycloaddition catalyzed by palladium. The asymmetric reaction between gem-difluoroalkenes and racemic vinyl epoxides or vinylethylene carbonates resulted in the formation of enantioenriched 2,2-difluorotetrahydrofurans with an enantioselectivity up to 98 %. Notably, the reaction used the readily available (R)-BINAP as the ligand at a low loading and yielded a wide variety of difluorinated products in moderate to high yields. Both chiral diastereomers could be obtained in a single sequence.
Collapse
Affiliation(s)
- Jun Liu
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P.R. China
| | - Longhui Yu
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P.R. China
| | - Changwu Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, P.R. China
| | - Gang Zhao
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P.R. China
| |
Collapse
|
7
|
Liu J, Yu L, Zheng C, Zhao G. Asymmetric Synthesis of 2,2‐Difluorotetrahydrofurans through Palladium‐Catalyzed Formal [3+2] Cycloaddition. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jun Liu
- Key Laboratory of Synthetic Chemistry of Natural Substances Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P.R. China
| | - Longhui Yu
- Key Laboratory of Synthetic Chemistry of Natural Substances Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P.R. China
| | - Changwu Zheng
- School of Pharmacy Shanghai University of Traditional Chinese Medicine 1200 Cailun Road Shanghai 201203 P.R. China
| | - Gang Zhao
- Key Laboratory of Synthetic Chemistry of Natural Substances Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P.R. China
| |
Collapse
|
8
|
Wu J, Wu H, Li X, Liu X, Zhao Q, Huang G, Zhang C. Copper-Catalyzed Highly Selective Protoboration of CF 3 -Containing 1,3-Dienes. Angew Chem Int Ed Engl 2021; 60:20376-20382. [PMID: 34146388 DOI: 10.1002/anie.202105896] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/02/2021] [Indexed: 12/15/2022]
Abstract
The copper-catalyzed highly selective protoboration of CF3 -containing conjugated diene with proton source and B2 Pin2 has been developed. This chemistry could suppress the well-known defluorination and provide borated reagents with an intact CF3 -group. Further studies indicated that the functional group tolerance of this chemistry is very well, and the products could be used as versatile precursors for different types of transformations. Importantly, using chiral diphosphine ligand, we have developed the first example for using such starting material to synthesis allylic boron-reagents which bearing a CF3 -containing chiral center. Notably, the reaction mechanism was intensively studied by DFT calculations, which could reveal the reason that defluorination was inhibited.
Collapse
Affiliation(s)
- Juanjuan Wu
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Hongli Wu
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Xinzhi Li
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Xinyu Liu
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Qian Zhao
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Genping Huang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Chun Zhang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
9
|
Wu J, Wu H, Li X, Liu X, Zhao Q, Huang G, Zhang C. Copper‐Catalyzed Highly Selective Protoboration of CF
3
‐Containing 1,3‐Dienes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Juanjuan Wu
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Hongli Wu
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Xinzhi Li
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Xinyu Liu
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Qian Zhao
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Genping Huang
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Chun Zhang
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| |
Collapse
|
10
|
Pan Z, Li W, Zhu S, Liu F, Wu H, Zhang J. Palladium/TY‐Phos‐Catalyzed Asymmetric Intermolecular α‐Arylation of Aldehydes with Aryl Bromides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Zhangjin Pan
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
| | - Wenbo Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
| | - Shuai Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
| | - Feng Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
| | - Hai‐Hong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
| | - Junliang Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| |
Collapse
|
11
|
Palladium/TY‐Phos‐Catalyzed Asymmetric Intermolecular α‐Arylation of Aldehydes with Aryl Bromides. Angew Chem Int Ed Engl 2021; 60:18542-18546. [DOI: 10.1002/anie.202106109] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Indexed: 12/13/2022]
|
12
|
Liu C, Zhu C, Cai Y, Jiang H. Solvent-Switched Oxidation Selectivities with O 2 : Controlled Synthesis of α-Difluoro(thio)methylated Alcohols and Ketones. Angew Chem Int Ed Engl 2021; 60:12038-12045. [PMID: 33704886 DOI: 10.1002/anie.202017271] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Indexed: 12/12/2022]
Abstract
The solvent-switched hydroxylation and oxygenation of α-difluoro(thio)methylated carbanions with molecular oxygen under mild conditions are reported. This strategy tames the redox reactions of the in situ generated hydroperoxy difluoromethylsulfides, in which solvent-bonding can alter their reactivity and switch the oxidation selectivities. These controllable three-component reactions of gem-difluoroalkenes, thiols and molecular oxygen afford various useful α-difluoro(thio)methylated alcohols and ketones in high yields. Significantly, this protocol has been applied in the synthesis different bioactive molecules. Mechanism studies enable the detection of the hydroperoxy difluoromethylsulfide intermediates and exclude the thiol-based radical pathway.
Collapse
Affiliation(s)
- Chi Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Chuanle Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yingying Cai
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
13
|
Wei B, Ren Q, Bein T, Knochel P. Transition-Metal-Free Synthesis of Polyfunctional Triarylmethanes and 1,1-Diarylalkanes by Sequential Cross-Coupling of Benzal Diacetates with Organozinc Reagents. Angew Chem Int Ed Engl 2021; 60:10409-10414. [PMID: 33625773 PMCID: PMC8252654 DOI: 10.1002/anie.202101682] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Indexed: 12/02/2022]
Abstract
A variety of functionalized triarylmethane and 1,1-diarylalkane derivatives were prepared via a transition-metal-free, one-pot and two-step procedure, involving the reaction of various benzal diacetates with organozinc reagents. A sequential cross-coupling is enabled by changing the solvent from THF to toluene, and a two-step SN 1-type mechanism was proposed and evidenced by experimental studies. The synthetic utility of the method is further demonstrated by the synthesis of several biologically relevant molecules, such as an anti-tuberculosis agent, an anti-breast cancer agent, a precursor of a sphingosine-1-phosphate (S1P) receptor modulator, and a FLAP inhibitor.
Collapse
Affiliation(s)
- Baosheng Wei
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Qianyi Ren
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Thomas Bein
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Paul Knochel
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| |
Collapse
|
14
|
Min Y, Sheng J, Yu J, Ni S, Ma G, Gong H, Wang X. Diverse Synthesis of Chiral Trifluoromethylated Alkanes via Nickel‐Catalyzed Asymmetric Reductive Cross‐Coupling Fluoroalkylation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yue Min
- School of Materials Science and Engineering Center for Supramolecular Chemistry and Catalysis Department of Chemistry Shanghai University Shanghai 200444 China
| | - Jie Sheng
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry Center for Excellence in Molecular Synthesis of CAS University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Jian‐Liang Yu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry Center for Excellence in Molecular Synthesis of CAS University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Shan‐Xiu Ni
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry Center for Excellence in Molecular Synthesis of CAS University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Guobin Ma
- School of Materials Science and Engineering Center for Supramolecular Chemistry and Catalysis Department of Chemistry Shanghai University Shanghai 200444 China
| | - Hegui Gong
- School of Materials Science and Engineering Center for Supramolecular Chemistry and Catalysis Department of Chemistry Shanghai University Shanghai 200444 China
| | - Xi‐Sheng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry Center for Excellence in Molecular Synthesis of CAS University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| |
Collapse
|
15
|
Liu C, Zhu C, Cai Y, Jiang H. Solvent‐Switched Oxidation Selectivities with O
2
: Controlled Synthesis of α‐Difluoro(thio)methylated Alcohols and Ketones. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Chi Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 P. R. China
| | - Chuanle Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 P. R. China
| | - Yingying Cai
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 P. R. China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 P. R. China
| |
Collapse
|
16
|
Zhang JQ, Hu D, Song J, Ren H. [3 + 2]-Annulation of gem-Difluoroalkenes and Pyridinium Ylides: Access to Functionalized 2-Fluoroindolizines. J Org Chem 2021; 86:4646-4660. [PMID: 33683121 DOI: 10.1021/acs.joc.0c03041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A [3 + 2]-annulation of gem-difluoroalkenes and pyridinium ylides was developed employing ambient air as the sole oxidant in an open-vessel manner, affording a series of multifunctionalized 2-fluoroindolizines in moderate to good yields. In this reaction, gem-difluoroalkene acts as a C2 synthon and entirely avoids the competitive addition-elimination process, which provides facile access to 2-fluoroindolizines.
Collapse
Affiliation(s)
- Jun-Qi Zhang
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P.R. China
| | - Dandan Hu
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P.R. China
| | - Jinyu Song
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P.R. China
| | - Hongjun Ren
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P.R. China
| |
Collapse
|
17
|
Min Y, Sheng J, Yu JL, Ni SX, Ma G, Gong H, Wang XS. Diverse Synthesis of Chiral Trifluoromethylated Alkanes via Nickel-Catalyzed Asymmetric Reductive Cross-Coupling Fluoroalkylation. Angew Chem Int Ed Engl 2021; 60:9947-9952. [PMID: 33569847 DOI: 10.1002/anie.202101076] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/06/2021] [Indexed: 11/06/2022]
Abstract
The trifluoromethyl group represents one of the most functional and widely used fluoroalkyl groups in drug design and screening, while the drug candidates containing chiral trifluoromethyl-bearing carbons are still few due to the lack of efficient methods for the asymmetric introduction of trifluoromethyl group into organic molecules. Herein, we described a nickel-catalyzed asymmetric trifluoroalkylation of aryl iodides, for the first time, by utilizing reductive cross-coupling in enantioselective fluoroalkylation. This novel method has demonstrated high efficiency, mild conditions, and excellent functional group tolerance, especially for substrates containing diverse pharmaceutical and bioactive molecules moieties. This strategy provided an efficient and facile way for diversity-oriented synthesis of chiral trifluoromethylated alkanes.
Collapse
Affiliation(s)
- Yue Min
- School of Materials Science and Engineering, Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, Shanghai University, Shanghai, 200444, China
| | - Jie Sheng
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Jian-Liang Yu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Shan-Xiu Ni
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Guobin Ma
- School of Materials Science and Engineering, Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, Shanghai University, Shanghai, 200444, China
| | - Hegui Gong
- School of Materials Science and Engineering, Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, Shanghai University, Shanghai, 200444, China
| | - Xi-Sheng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| |
Collapse
|
18
|
Wei B, Ren Q, Bein T, Knochel P. Übergangsmetallfreie Synthese polyfunktioneller Triarylmethane und 1,1‐Diarylalkane durch sequentielle Kreuzkupplungen von Benzaldiacetaten mit Organozinkreagenzien. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Baosheng Wei
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstraße 5–13, Haus F 81377 München Deutschland
| | - Qianyi Ren
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstraße 5–13, Haus F 81377 München Deutschland
| | - Thomas Bein
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstraße 5–13, Haus F 81377 München Deutschland
| | - Paul Knochel
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstraße 5–13, Haus F 81377 München Deutschland
| |
Collapse
|