1
|
van Druenen M, Collins T, Davitt F, Doherty J, Collins G, Sofer Z, Holmes JD. Stabilization of Black Phosphorus by Sonication-Assisted Simultaneous Exfoliation and Functionalization. Chemistry 2020; 26:17581-17587. [PMID: 33006155 DOI: 10.1002/chem.202003895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/29/2020] [Indexed: 12/21/2022]
Abstract
Black phosphorus (BP) has extraordinary properties, but its ambient instability remains a critical challenge. Functionalization has been employed to overcome the sensitivity of BP to ambient conditions while preserving its properties. Herein, a simultaneous exfoliation-functionalization process is reported that functionalizes BP flakes during exfoliation and thus provides increased protection, which can be attributed to minimal exposure of the flakes to ambient oxygen and water. A tetrabutylammonium salt was employed for intercalation of BP, resulting in the formation of flakes with large lateral dimensions. The addition of an aryl iodide or an aryl iodonium salt to the exfoliation solvent creates a scalable strategy for the production of functionalized few-layer BP flakes. The ambient stability of functionalized BP was prolonged to a period of one week, as revealed by STEM, AFM, and X-ray photoelectron spectroscopy.
Collapse
Affiliation(s)
- Maart van Druenen
- School of Chemistry, Environmental Research Institute &, Tyndall National Institute, University College Cork, Cork, T12 YN60, Ireland.,Central Laboratories, University of Chemistry and Technology Prague, Technická 5, 16628, Prague 6, Czech Republic.,AMBER@CRANN, Trinity College Dublin, Dublin, 2, Ireland
| | - Timothy Collins
- School of Chemistry, Environmental Research Institute &, Tyndall National Institute, University College Cork, Cork, T12 YN60, Ireland.,Central Laboratories, University of Chemistry and Technology Prague, Technická 5, 16628, Prague 6, Czech Republic.,AMBER@CRANN, Trinity College Dublin, Dublin, 2, Ireland
| | - Fionán Davitt
- School of Chemistry, Environmental Research Institute &, Tyndall National Institute, University College Cork, Cork, T12 YN60, Ireland.,Central Laboratories, University of Chemistry and Technology Prague, Technická 5, 16628, Prague 6, Czech Republic.,AMBER@CRANN, Trinity College Dublin, Dublin, 2, Ireland
| | - Jessica Doherty
- School of Chemistry, Environmental Research Institute &, Tyndall National Institute, University College Cork, Cork, T12 YN60, Ireland.,Central Laboratories, University of Chemistry and Technology Prague, Technická 5, 16628, Prague 6, Czech Republic.,AMBER@CRANN, Trinity College Dublin, Dublin, 2, Ireland
| | - Gillian Collins
- School of Chemistry, Environmental Research Institute &, Tyndall National Institute, University College Cork, Cork, T12 YN60, Ireland.,Central Laboratories, University of Chemistry and Technology Prague, Technická 5, 16628, Prague 6, Czech Republic.,AMBER@CRANN, Trinity College Dublin, Dublin, 2, Ireland
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628, Prague 6, Czech Republic
| | - Justin D Holmes
- School of Chemistry, Environmental Research Institute &, Tyndall National Institute, University College Cork, Cork, T12 YN60, Ireland.,Central Laboratories, University of Chemistry and Technology Prague, Technická 5, 16628, Prague 6, Czech Republic.,AMBER@CRANN, Trinity College Dublin, Dublin, 2, Ireland
| |
Collapse
|