1
|
Tarrío JJ, Rodríguez R, Fernández B, Quiñoá E, Freire F. Dissymmetric Chiral Poly(diphenylacetylene)s: Secondary Structure Elucidation and Dynamic Luminescence. Angew Chem Int Ed Engl 2022; 61:e202115070. [DOI: 10.1002/anie.202115070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Indexed: 12/17/2022]
Affiliation(s)
- Juan José Tarrío
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Rafael Rodríguez
- WPI Nano Life Science Institute (WPI-NanoLSI) Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| | - Berta Fernández
- Departamento de Química Física Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Emilio Quiñoá
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Félix Freire
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| |
Collapse
|
2
|
Freire F, Tarrío JJ, Rodríguez R, Fernández B, Quiñoá E. Dissymmetric Chiral Poly(diphenylacetylene)s: Secondary Structure Elucidation and Dynamic Luminescence. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Felix Freire
- Universidade de Santiago de Compostela Centre for Research in Biological Chemistry and Molecular Materials Jenaro de la Fuente street s/n 15782 Santiago de Compostela SPAIN
| | - Juan José Tarrío
- Universidade de Santiago de Compostela - Campus de Santiago: Universidade de Santiago de Compostela CiQUS SPAIN
| | - Rafael Rodríguez
- Kanazawa University - Kakuma Campus: Kanazawa Daigaku Organic Chemsitry JAPAN
| | - Berta Fernández
- Universidade de Santiago de Compostela - Campus de Santiago: Universidade de Santiago de Compostela Physical Chemistry RWANDA
| | - Emilio Quiñoá
- Universidade de Santiago de Compostela - Campus de Santiago: Universidade de Santiago de Compostela CiQUS SPAIN
| |
Collapse
|
3
|
Yin L, Liu M, Ma H, Cheng X, Miao T, Zhang W, Zhu X. Induction and modulation of supramolecular chirality in side-chain azobenzene polymers through the covalent chiral domino effect. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1132-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Wang S, Hu D, Guan X, Cai S, Shi G, Shuai Z, Zhang J, Peng Q, Wan X. Brightening up Circularly Polarized Luminescence of Monosubstituted Polyacetylene by Conformation Control: Mechanism, Switching, and Sensing. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sheng Wang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry and Physics of Ministry of Education College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Deping Hu
- Key Laboratory of Organic OptoElectronics and Molecular, Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
| | - Xiaoyan Guan
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry and Physics of Ministry of Education College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Siliang Cai
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry and Physics of Ministry of Education College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Ge Shi
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry and Physics of Ministry of Education College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Zhigang Shuai
- Key Laboratory of Organic OptoElectronics and Molecular, Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
| | - Jie Zhang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry and Physics of Ministry of Education College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Qian Peng
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Xinhua Wan
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry and Physics of Ministry of Education College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| |
Collapse
|
5
|
Wang S, Hu D, Guan X, Cai S, Shi G, Shuai Z, Zhang J, Peng Q, Wan X. Brightening up Circularly Polarized Luminescence of Monosubstituted Polyacetylene by Conformation Control: Mechanism, Switching, and Sensing. Angew Chem Int Ed Engl 2021; 60:21918-21926. [PMID: 34309164 DOI: 10.1002/anie.202108010] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/15/2021] [Indexed: 11/09/2022]
Abstract
The first example of luminescent monosubstituted polyacetylenes (mono-PAs) is presented, based on a contracted cis-cisoid polyene backbone. It has an excellent circularly polarized luminescence (CPL) performance with a high dissymmetric factor (up to the order of 10-1 ). The luminescence stems from the helical cis-cisoid PA backbone, which is tightly fixed by the strong intramolecular hydrogen bonds, thereby reversing the energy order of excited states and enabling an emissive energy dissipation. CPL switches are facilely achieved by the solvent and temperature through reversible conformational transition. By taking advantages of fast response and high sensitivity, the thin film of mono-PAs could be used as a CPL-based probe for quantitative detection of trifluoroacetic acid with a wider linear dynamic range than those of photoluminescence and circular dichroism. This work opens a new avenue to develop novel smart CPL materials through modulating conformational transition.
Collapse
Affiliation(s)
- Sheng Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Deping Hu
- Key Laboratory of Organic OptoElectronics and Molecular, Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xiaoyan Guan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Siliang Cai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ge Shi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zhigang Shuai
- Key Laboratory of Organic OptoElectronics and Molecular, Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jie Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Qian Peng
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinhua Wan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
6
|
Van Zee NJ, Mabesoone MFJ, Adelizzi B, Palmans ARA, Meijer EW. Biasing the Screw-Sense of Supramolecular Coassemblies Featuring Multiple Helical States. J Am Chem Soc 2020; 142:20191-20200. [PMID: 33169999 PMCID: PMC7705959 DOI: 10.1021/jacs.0c10456] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Indexed: 12/15/2022]
Abstract
By enchaining a small fraction of chiral monomer units, the helical sense of a dynamic polymer constructed from achiral monomer units can be disproportionately biased. This phenomenon, known as the sergeants-and-soldiers (S&S) effect, has been found to be widely applicable to dynamic covalent and supramolecular polymers. However, it has not been exemplified with a supramolecular polymer that features multiple helical states. Herein, we demonstrate the S&S effect in the context of the temperature-controlled supramolecular copolymerization of chiral and achiral biphenyl tetracarboxamides in alkanes. The one-dimensional helical structures presented in this study are unique because they exhibit three distinct helical states, two of which are triggered by coassembling with monomeric water that is codissolved in the solvent. The self-assembly pathways are rationalized using a combination of mathematical fitting and simulations with a thermodynamic mass-balance model. We observe an unprecedented case of an "abnormal" S&S effect by changing the side chains of the achiral soldier. Although the molecular structure of these aggregates remains elusive, the coassembly of water is found to have a profound impact on the helical excess.
Collapse
Affiliation(s)
- Nathan J. Van Zee
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
- Chimie
Moléculaire, Macromoléculaire, Matériaux, ESPCI
Paris, Université PSL, CNRS, 75005 Paris, France
| | - Mathijs F. J. Mabesoone
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Beatrice Adelizzi
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Anja R. A. Palmans
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - E. W. Meijer
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|