1
|
Lu C, You W. Spatially Resolved Multicolor Luminescence Tuning on the Single 1D Heterogeneous Microrod. Chemistry 2024; 30:e202401755. [PMID: 39031564 DOI: 10.1002/chem.202401755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 07/22/2024]
Abstract
The spatially resolvable multicolored microrods have potential applications in many fields. However, achieving spatially resolved multicolor luminescence tuning on the microrod with a fixed composition remains a daunting challenge. Herein, a strategy is proposed that allows for the tuning of spatially resolved, multicolored upconversion (UC) luminescence (UCL) along a 1D heterogeneous microrod by modifying the pulse width of an external laser. NaYbF4:1 % Ho is identified as an UCL color-adjustable material, exhibiting pulse width-dependent multicolored UCL, resulting in a significant regulation of the red/green (R/G) ratio from 0.1 to 10.3 as the pulse width is varied from 0.1 to 10 ms. Such variability can be ascribed to differences in the number of photons incident upon the microrod throughout the period necessary for the UC process to occur. Additionally, NaYbF4:1 %Tm and NaYF4:20 %Yb,1 %Ho are employed as materials that emit blue and green light, respectively, with their UCL colors largely unaffected by changes in the pulse width. Subsequently, a tip-modified epitaxial growth method is utilized to integrate both UCL color-adjustable and non-adjustable segments within the same microrod. Comparing with single-color or fixed multicolor microrods, our developed multisegmented emissive color adjustable 1D heterogeneous microrods have unique optical characteristics and can carry more optical information.
Collapse
Affiliation(s)
- Changyuan Lu
- School of Environmental Engineering, Yellow River Conservancy Technical Institute, Kaifeng, 475004, China
| | - Wenwu You
- School of Physics and Electronics, Henan University, Kaifeng, 475004, China
| |
Collapse
|
2
|
Sun S, Zhao Y, Wang J, Pei R. Lanthanide-based MOFs: synthesis approaches and applications in cancer diagnosis and therapy. J Mater Chem B 2022; 10:9535-9564. [PMID: 36385652 DOI: 10.1039/d2tb01884e] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Metal-organic frameworks (MOFs) have attracted considerable attention as emerging nanomaterials. Based on their tunable size, high porosity, and large specific surface area, MOFs have a wide range of applications in the fields of chemistry, energy, and biomedicine. However, the MOF materials obtained from lanthanides with a unique electronic configuration as inorganic building units have unique properties such as optics, magnetism, and radioactivity. In this study, various synthetic methods for preparing MOF materials using lanthanides as inorganic building units are described. Combined with the characteristics of lanthanides, their application prospects of lanthanide-based MOFs in tumor diagnosis and treatment are emphasized. The authors hope to provide methodological reference for the construction of MOF materials of rare-earth elements, and to provide ideas and inspiration for their practical applications in the field of biomedicine.
Collapse
Affiliation(s)
- Shengkai Sun
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 210009, China.,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Yuewu Zhao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Jine Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China. .,School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China. .,School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
3
|
Dynamic Manipulating Space‐Resolved Persistent Luminescence in Core–Shell MOFs Heterostructures via Reversible Photochromism. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
Gao Z, Yang S, Xu B, Zhang T, Chen S, Zhang W, Sun X, Wang Z, Wang X, Meng X, Zhao YS. Laterally Engineering Lanthanide-MOFs Epitaxial Heterostructures for Spatially Resolved Planar 2D Photonic Barcoding. Angew Chem Int Ed Engl 2021; 60:24519-24525. [PMID: 34339093 DOI: 10.1002/anie.202109336] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 11/06/2022]
Abstract
Metal-organic frameworks (MOFs) heterostructures with domain-controlled emissive colors have shown great potential for achieving high-throughput sensing, anti-counterfeit and information security. Here, a strategy based on steric-hindrance effect is proposed to construct lateral lanthanide-MOFs (Ln-MOFs) epitaxial heterostructures, where the channel-directed guest molecules are introduced to rebalance in-plane and out-of-plane growth rates of the Ln-MOFs microrods and eventually generate lateral MOF epitaxial heterostructures with controllable aspect ratios. A library of lateral Ln-MOFs heterostructures are acquired through a stepwise epitaxial growth procedure, from which rational modulation of each domain with specific lanthanide doping species allows for definition of photonic barcodes in a two-dimensional (2D) domain with remarkably enlarged encoding capacity. The results provide molecular-level insight into the use of modulators in governing crystallite morphology for spatially assembling multifunctional heterostructures.
Collapse
Affiliation(s)
- Zhenhua Gao
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Shuo Yang
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Baoyuan Xu
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Tongjin Zhang
- Key Laboratory of photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shunwei Chen
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Weiguang Zhang
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Xun Sun
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Zifei Wang
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Xue Wang
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Xiangeng Meng
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Yong Sheng Zhao
- Key Laboratory of photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
5
|
Ma YJ, Fang X, Xiao G, Yan D. Dynamic Manipulating Space-Resolved Persistent Luminescence in Core-Shell MOFs Heterostructures via Reversible Photochromism. Angew Chem Int Ed Engl 2021; 61:e202114100. [PMID: 34747088 DOI: 10.1002/anie.202114100] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Indexed: 12/18/2022]
Abstract
Photo-controllable persistent luminescence at the single crystal level can be achieved by the integration of long-lived room temperature phosphorescence (RTP) and photochromism within metal-organic frameworks (MOFs) for the first time. Moreover, the multiblock core-shell heterojunctions have been prepared utilizing the isostructural MOFs through an epitaxial growth process, in which the shell exhibits bright yellow afterglow emission that gradually disappears upon further irradiation, but the core does not show such property. Benefitting from combined persistent luminescence and photochromic behavior, a multiple encryption demo can be facilely designed based on the dynamic manipulating RTP via reversible photochromism. This work not only develops new types of dynamically photo-controllable afterglow switch, but also provides a method to obtain MOFs-based optical heterojunctions towards potential space/time-resolved information encryption and anti-counterfeiting applications.
Collapse
Affiliation(s)
- Yu-Juan Ma
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xiaoyu Fang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Guowei Xiao
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China.,Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
6
|
Gao Z, Yang S, Xu B, Zhang T, Chen S, Zhang W, Sun X, Wang Z, Wang X, Meng X, Zhao YS. Laterally Engineering Lanthanide‐MOFs Epitaxial Heterostructures for Spatially Resolved Planar 2D Photonic Barcoding. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Zhenhua Gao
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Shuo Yang
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Baoyuan Xu
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Tongjin Zhang
- Key Laboratory of photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Shunwei Chen
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Weiguang Zhang
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Xun Sun
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Zifei Wang
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Xue Wang
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Xiangeng Meng
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Yong Sheng Zhao
- Key Laboratory of photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
7
|
Gao Z, Xu B, Fan Y, Zhang T, Chen S, Yang S, Zhang W, Sun X, Wei Y, Wang Z, Wang X, Meng X, Zhao YS. Topological‐Distortion‐Driven Amorphous Spherical Metal‐Organic Frameworks for High‐Quality Single‐Mode Microlasers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zhenhua Gao
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Baoyuan Xu
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Yuqing Fan
- Key Laboratory of photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Tongjin Zhang
- Key Laboratory of photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Shunwei Chen
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Shuo Yang
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Weiguang Zhang
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Xun Sun
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Yanhui Wei
- College of Chemistry and Material Science Shandong Agricultural University Taian 271018 Shandong China
| | - Zifei Wang
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Xue Wang
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Xiangeng Meng
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Yong Sheng Zhao
- Key Laboratory of photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
8
|
Gao Z, Xu B, Fan Y, Zhang T, Chen S, Yang S, Zhang W, Sun X, Wei Y, Wang Z, Wang X, Meng X, Zhao YS. Topological-Distortion-Driven Amorphous Spherical Metal-Organic Frameworks for High-Quality Single-Mode Microlasers. Angew Chem Int Ed Engl 2021; 60:6362-6366. [PMID: 33315282 DOI: 10.1002/anie.202014033] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/26/2020] [Indexed: 01/25/2023]
Abstract
Metal-organic frameworks (MOFs) have recently emerged as appealing platforms to construct microlasers owing to their compelling characters combining the excellent stability of inorganic materials and processable characters of organic materials. However, MOF microstructures developed thus far are generally composed of multiple edge boundaries due to their crystalline nature, which consequently raises significant scattering losses that are detrimental to lasing performance. In this work, we propose a strategy to overcome the above drawback by designing spherically shaped MOFs microcavities. Such spherical MOF microstructures are constructed by amorphizing MOFs with a topological distortion network through introducing flexible building blocks into the growth environment. With an ultra-smooth surface and excellent circular boundaries, the acquired spherical microcavities possess a Q factor as high as ≈104 and can provide sufficient feedback for high-quality single-mode lasing oscillations. We hope that these results will pave an avenue for the construction of new types of flexible MOF-based photonic components.
Collapse
Affiliation(s)
- Zhenhua Gao
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Baoyuan Xu
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Yuqing Fan
- Key Laboratory of photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tongjin Zhang
- Key Laboratory of photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shunwei Chen
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Shuo Yang
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Weiguang Zhang
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Xun Sun
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Yanhui Wei
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Zifei Wang
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Xue Wang
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Xiangeng Meng
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Yong Sheng Zhao
- Key Laboratory of photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
9
|
Deneff JI, Butler KS, Rohwer LES, Pearce CJ, Valdez NR, Rodriguez MA, Luk TS, Sava Gallis DF. Encoding Multilayer Complexity in Anti-Counterfeiting Heterometallic MOF-Based Optical Tags. Angew Chem Int Ed Engl 2021; 60:1203-1211. [PMID: 33137241 DOI: 10.1002/anie.202013012] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Indexed: 11/06/2022]
Abstract
Optical tags provide a way to quickly and unambiguously identify valuable assets. Current tag fluorophore options lack the tunability to allow combined methods of encoding in a single material. Herein we report a design strategy to encode multilayer complexity in a family of heterometallic rare-earth metal-organic frameworks based on highly connected nonanuclear clusters. To impart both intricacy and security, a synergistic approach was implemented resulting in both overt (visible) and covert (near-infrared, NIR) properties, with concomitant multi-emissive spectra and tunable luminescence lifetimes. Tag authentication is validated with a variety of orthogonal detection methodologies. Importantly, the effect induced by subtle compositional changes on intermetallic energy transfer, and thus on the resulting photophysical properties, is demonstrated. This strategy can be widely implemented to create a large library of highly complex, difficult-to-counterfeit optical tags.
Collapse
Affiliation(s)
- Jacob I Deneff
- Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, NM, 87185, USA
| | - Kimberly S Butler
- Molecular and Microbiology Department, Sandia National Laboratories, Albuquerque, NM, 87185, USA
| | - Lauren E S Rohwer
- Microsystems Integration Department, Sandia National Laboratories, Albuquerque, NM, 87185, USA
| | - Charles J Pearce
- Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, NM, 87185, USA
| | - Nichole R Valdez
- Materials Characterization and Performance Department, Sandia National Laboratories, Albuquerque, NM, 87185, USA
| | - Mark A Rodriguez
- Materials Characterization and Performance Department, Sandia National Laboratories, Albuquerque, NM, 87185, USA
| | - Ting S Luk
- Nanostructure Physics Department, Sandia National Laboratories, Albuquerque, NM, 87185, USA
| | - Dorina F Sava Gallis
- Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, NM, 87185, USA
| |
Collapse
|
10
|
Deneff JI, Butler KS, Rohwer LES, Pearce CJ, Valdez NR, Rodriguez MA, Luk TS, Sava Gallis DF. Encoding Multilayer Complexity in Anti‐Counterfeiting Heterometallic MOF‐Based Optical Tags. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jacob I. Deneff
- Nanoscale Sciences Department Sandia National Laboratories Albuquerque NM 87185 USA
| | - Kimberly S. Butler
- Molecular and Microbiology Department Sandia National Laboratories Albuquerque NM 87185 USA
| | - Lauren E. S. Rohwer
- Microsystems Integration Department Sandia National Laboratories Albuquerque NM 87185 USA
| | - Charles J. Pearce
- Nanoscale Sciences Department Sandia National Laboratories Albuquerque NM 87185 USA
| | - Nichole R. Valdez
- Materials Characterization and Performance Department Sandia National Laboratories Albuquerque NM 87185 USA
| | - Mark A. Rodriguez
- Materials Characterization and Performance Department Sandia National Laboratories Albuquerque NM 87185 USA
| | - Ting S. Luk
- Nanostructure Physics Department Sandia National Laboratories Albuquerque NM 87185 USA
| | | |
Collapse
|
11
|
Ou Y, Zhou W, Zhu Z, Ma F, Zhou R, Su F, Zheng L, Ma L, Liang H. Host Differential Sensitization toward Color/Lifetime‐Tuned Lanthanide Coordination Polymers for Optical Multiplexing. Angew Chem Int Ed Engl 2020; 59:23810-23816. [DOI: 10.1002/anie.202011559] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Yiyi Ou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry KLGHEI of Environment and Energy Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Weijie Zhou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry KLGHEI of Environment and Energy Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Zece Zhu
- Wuhan National Laboratory for Optoelectronics School of Optical and Electronic Information Huazhong University of Science and Technology Wuhan 430074 China
| | - Fengkai Ma
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry KLGHEI of Environment and Energy Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Rongfu Zhou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry KLGHEI of Environment and Energy Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Fang Su
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry KLGHEI of Environment and Energy Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility Institute of High Energy Physics Chinese Academy of Sciences Beijing 100039 China
| | - Li Ma
- Department of Physics Georgia Southern University Statesboro Georgia 30460 USA
| | - Hongbin Liang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry KLGHEI of Environment and Energy Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| |
Collapse
|
12
|
Ou Y, Zhou W, Zhu Z, Ma F, Zhou R, Su F, Zheng L, Ma L, Liang H. Host Differential Sensitization toward Color/Lifetime‐Tuned Lanthanide Coordination Polymers for Optical Multiplexing. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011559] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yiyi Ou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry KLGHEI of Environment and Energy Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Weijie Zhou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry KLGHEI of Environment and Energy Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Zece Zhu
- Wuhan National Laboratory for Optoelectronics School of Optical and Electronic Information Huazhong University of Science and Technology Wuhan 430074 China
| | - Fengkai Ma
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry KLGHEI of Environment and Energy Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Rongfu Zhou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry KLGHEI of Environment and Energy Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Fang Su
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry KLGHEI of Environment and Energy Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility Institute of High Energy Physics Chinese Academy of Sciences Beijing 100039 China
| | - Li Ma
- Department of Physics Georgia Southern University Statesboro Georgia 30460 USA
| | - Hongbin Liang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry KLGHEI of Environment and Energy Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| |
Collapse
|