1
|
Fu W, Qi M, Rong Y, Lin C, Guo W, Su B. Remote On-Paper Electrochemiluminescence-Based High-Safety and Multilevel Information Encryption. Angew Chem Int Ed Engl 2024:e202420184. [PMID: 39659206 DOI: 10.1002/anie.202420184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/27/2024] [Accepted: 12/11/2024] [Indexed: 12/12/2024]
Abstract
The escalating needs in information protection underscore the urgency of developing advanced encryption strategies. Herein we report a novel chemical approach that enables information encryption by on-paper electrochemiluminescence (ECL). Dendritic porous silica nanospheres modified with polyetherimide and bovine serum albumin were prepared as the chemical ink to write the secret message on a paper. Attaching the paper to an electrode, immersing it in a solution containing tris(2,2'-bipyridyl)ruthenium (Ru(bpy)3 2+) and then applying a suitable voltage, a remote "catalytic route" electrochemical reaction produces ECL that functions as the key to decrypt and visualize the message by imaging. In addition, proteins can be also used as the biological ink to write the secret message, which is then decrypted by a combined use of immunochemistry and ECL imaging as two keys. We believe the ECL-based strategy holds great promise in high-safety and multilevel information encryption, as it is protected not only by encoding, like conventional invisible inks, but also by the unique ECL decoding approach.
Collapse
Affiliation(s)
- Wenxuan Fu
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Min Qi
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Yidan Rong
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Chukai Lin
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Weiliang Guo
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Bin Su
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| |
Collapse
|
2
|
Wang Y, Ding J, Zhou P, Liu J, Qiao Z, Yu K, Jiang J, Su B. Electrochemiluminescence Distance and Reactivity of Coreactants Determine the Sensitivity of Bead-Based Immunoassays. Angew Chem Int Ed Engl 2023; 62:e202216525. [PMID: 36812044 DOI: 10.1002/anie.202216525] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 02/24/2023]
Abstract
Herein we report the study of electrochemiluminescence (ECL) generation by tris(2,2'-bipyridyl)ruthenium (Ru(bpy)3 2+ ) and five tertiary amine coreactants. The ECL distance and lifetime of coreactant radical cations were measured by ECL self-interference spectroscopy. And the reactivity of coreactants was quantitatively evaluated in terms of integrated ECL intensity. By statistical analysis of ECL images of single Ru(bpy)3 2+ -labeled microbeads, we propose that ECL distance and reactivity of coreactant codetermine the emission intensity and thus the sensitivity of immunoassay. 2,2-bis(hydroxymethyl)-2,2',2''-nitrilotriethanol (BIS-TRIS) can well balance ECL distance-reactivity trade-off and enhance the sensitivity by 236 % compared with tri-n-propylamine (TPrA) in the bead-based immunoassay of carcinoembryonic antigen. The study brings an insightful understanding of ECL generation in bead-based immunoassay and a way of maximizing the analytical sensitivity from the aspect of coreactant.
Collapse
Affiliation(s)
- Yafeng Wang
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Jialian Ding
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Ping Zhou
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Jilin Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhiyuan Qiao
- School of Environment, School of Marine Science and Technology (Weihai), Harbin Institute of Technology, Weihai, 150090, China
| | - Kai Yu
- School of Environment, School of Marine Science and Technology (Weihai), Harbin Institute of Technology, Weihai, 150090, China
| | - Jie Jiang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.,School of Environment, School of Marine Science and Technology (Weihai), Harbin Institute of Technology, Weihai, 150090, China.,State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Bin Su
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
3
|
Zhu W, Dong J, Ruan G, Zhou Y, Feng J. Quantitative Single-Molecule Electrochemiluminescence Bioassay. Angew Chem Int Ed Engl 2023; 62:e202214419. [PMID: 36504245 DOI: 10.1002/anie.202214419] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
A single-molecule electrochemiluminescence bioassay is developed here which allows imaging and direct quantification of single biomolecules. Imaging single biomolecules is realized by localizing the electrochemiluminescence events of the labeled molecules. Such an imaging system allows mapping the spatial distribution of biomolecules with electrochemiluminescence and contains quantitative single-molecule insights. We further quantify biomolecules by spatiotemporally merging the repeated reactions at one molecule site and then counting the clustered molecules. The proposed single-molecule electrochemiluminescence bioassay is used to detect carcinoembryonic antigen, showing a limit of detection of 67 attomole concentration which is 10 000 times better than conventional electrochemiluminescence bioassays. This spatial resolution and sensitivity enable single-molecule electrochemiluminescence bioassay a new toolbox for both specific bioimaging and ultrasensitive quantitative analysis.
Collapse
Affiliation(s)
- Wenxin Zhu
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Jinrun Dong
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Guoxiang Ruan
- Department of Laboratory Medicine, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Institute of Laboratory Medicine, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yuan Zhou
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Jiandong Feng
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China.,Research Center for Quantum Sensing, Research Institute of Intelligent Sensing, Zhejiang Lab, Hangzhou, 311121, China
| |
Collapse
|
4
|
Huang X, Li B, Lu Y, Liu Y, Wang S, Sojic N, Jiang D, Liu B. Direct Visualization of Nanoconfinement Effect on Nanoreactor via Electrochemiluminescence Microscopy. Angew Chem Int Ed Engl 2023; 62:e202215078. [PMID: 36478505 DOI: 10.1002/anie.202215078] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/21/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
Nanoconfinement in mesoporous nanoarchitectures could dramatically change molecular transport and reaction kinetics during electrochemical process. A molecular-level understanding of nanoconfinement and mass transport is critical for the applications, but a proper route to study it is lacking. Herein, we develop a single nanoreactor electrochemiluminescence (SNECL) microscopy based on Ru(bpy)3 2+ -loaded mesoporous silica nanoparticle to directly visualize in situ nanoconfinement-enhanced electrochemical reactions at the single molecule level. Meanwhile, mass transport capability of single nanoreactor, reflected as long decay time and recovery ability, is monitored and simulated with a high spatial resolution. The nanoconfinement effects in our system also enable imaging single proteins on cellular membrane. Our SNECL approach may pave the way to decipher the nanoconfinement effects during electrochemical process, and build bridges between mesoporous nanoarchitectures and potential electrochemical applications.
Collapse
Affiliation(s)
- Xuedong Huang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Binxiao Li
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Yanwei Lu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Yixin Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Shurong Wang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Neso Sojic
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, 33607, Pessac, France
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
5
|
Ma Y, Colin C, Descamps J, Arbault S, Sojic N. Shadow Electrochemiluminescence Microscopy of Single Mitochondria. Angew Chem Int Ed Engl 2021; 60:18742-18749. [PMID: 34115447 DOI: 10.1002/anie.202105867] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Indexed: 12/20/2022]
Abstract
Mitochondria are the subcellular bioenergetic organelles. The analysis of their morphology and topology is essential to provide useful information on their activity and metabolism. Herein, we report a label-free shadow electrochemiluminescence (ECL) microscopy based on the spatial confinement of the ECL-emitting reactive layer to image single living mitochondria deposited on the electrode surface. The ECL mechanism of the freely-diffusing [Ru(bpy)3 ]2+ dye with the sacrificial tri-n-propylamine coreactant restrains the light-emitting region to a micrometric thickness allowing to visualize individual mitochondria with a remarkable sharp negative optical contrast. The imaging approach named "shadow ECL" (SECL) reflects the negative imprint of the local diffusional hindrance of the ECL reagents by each mitochondrion. The statistical analysis of the colocalization of the shadow ECL spots with the functional mitochondria revealed by classical fluorescent biomarkers, MitoTracker Deep Red and the endogenous intramitochondrial NADH, validates the reported methodology. The versatility and extreme sensitivity of the approach are further demonstrated by visualizing single mitochondria, which remain hardly detectable with the usual biomarkers. Finally, by alleviating problems of photobleaching and phototoxicity associated with conventional microscopy methods, SECL microscopy should find promising applications in the imaging of subcellular structures.
Collapse
Affiliation(s)
- Yumeng Ma
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, 33607, Pessac, France
| | - Camille Colin
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, 33607, Pessac, France
| | - Julie Descamps
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, 33607, Pessac, France
| | - Stéphane Arbault
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, 33607, Pessac, France.,Present address: Univ. Bordeaux, CNRS, Bordeaux INP, CBMN UMR 5248, Allée Geoffroy Saint Hilaire, 33600, Pessac, France
| | - Neso Sojic
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, 33607, Pessac, France
| |
Collapse
|
6
|
Ma Y, Colin C, Descamps J, Arbault S, Sojic N. Shadow Electrochemiluminescence Microscopy of Single Mitochondria. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yumeng Ma
- University of Bordeaux Bordeaux INP ISM UMR CNRS 5255 33607 Pessac France
| | - Camille Colin
- University of Bordeaux Bordeaux INP ISM UMR CNRS 5255 33607 Pessac France
| | - Julie Descamps
- University of Bordeaux Bordeaux INP ISM UMR CNRS 5255 33607 Pessac France
| | - Stéphane Arbault
- University of Bordeaux Bordeaux INP ISM UMR CNRS 5255 33607 Pessac France
- Present address: Univ. Bordeaux CNRS Bordeaux INP CBMN UMR 5248 Allée Geoffroy Saint Hilaire 33600 Pessac France
| | - Neso Sojic
- University of Bordeaux Bordeaux INP ISM UMR CNRS 5255 33607 Pessac France
| |
Collapse
|
7
|
Han D, Goudeau B, Manojlovic D, Jiang D, Fang D, Sojic N. Electrochemiluminescence Loss in Photobleaching. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Dongni Han
- University of Bordeaux Bordeaux INP ISM, UMR CNRS 5255 33607 Pessac France
- School of Pharmacy and Key Laboratory of Targeted Intervention of Cardiovascular Disease Collaborative Innovation Center for Cardiovascular Disease Translational Medicine Nanjing Medical University Nanjing Jiangsu 211126 China
| | - Bertrand Goudeau
- University of Bordeaux Bordeaux INP ISM, UMR CNRS 5255 33607 Pessac France
| | - Dragan Manojlovic
- Department of Chemistry South Ural State University Chelyabinsk 454080 Russian Federation
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life and School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210093 China
| | - Danjun Fang
- School of Pharmacy and Key Laboratory of Targeted Intervention of Cardiovascular Disease Collaborative Innovation Center for Cardiovascular Disease Translational Medicine Nanjing Medical University Nanjing Jiangsu 211126 China
| | - Neso Sojic
- University of Bordeaux Bordeaux INP ISM, UMR CNRS 5255 33607 Pessac France
- Department of Chemistry South Ural State University Chelyabinsk 454080 Russian Federation
| |
Collapse
|
8
|
Han D, Goudeau B, Manojlovic D, Jiang D, Fang D, Sojic N. Electrochemiluminescence Loss in Photobleaching. Angew Chem Int Ed Engl 2021; 60:7686-7690. [PMID: 33410245 DOI: 10.1002/anie.202015030] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/04/2020] [Indexed: 12/11/2022]
Abstract
The effects of photobleaching on electrochemiluminescence (ECL) was investigated for the first time. The plasma membrane of Chinese Hamster Ovary (CHO) cells was labeled with a [Ru(bpy)3 ]2+ derivative. Selected regions of the fixed cells were photobleached using the confocal mode with sequential stepwise illumination or cumulatively and they were imaged by both ECL and photoluminescence (PL). ECL was generated with a model sacrificial coreactant, tri-n-propylamine. ECL microscopy of the photobleached regions shows lower ECL emission. We demonstrate a linear correlation between the ECL decrease and the PL loss due to the photobleaching of the labels immobilized on the CHO membranes. The presented strategy provides valuable information on the fundamentals of the ECL excited state and opens new opportunities for exploring cellular membranes by combining ECL microscopy with photobleaching techniques such as fluorescence recovery after photobleaching (FRAP) or fluorescence loss in photobleaching (FLIP) methods.
Collapse
Affiliation(s)
- Dongni Han
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, 33607, Pessac, France.,School of Pharmacy and Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211126, China
| | - Bertrand Goudeau
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, 33607, Pessac, France
| | - Dragan Manojlovic
- Department of Chemistry, South Ural State University, Chelyabinsk, 454080, Russian Federation
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Danjun Fang
- School of Pharmacy and Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211126, China
| | - Neso Sojic
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, 33607, Pessac, France.,Department of Chemistry, South Ural State University, Chelyabinsk, 454080, Russian Federation
| |
Collapse
|