1
|
Zheng Y, Zhang L, Huang Z, Li S, Zuo L, Liang Y, Liu C, Luo S, Shi G, Zhao Z, Sun F, Xu B. Bright Organic Mechanoluminescence and Remarkable Mechanofluorochromism from Circularly Polarized TADF Enantiomers with Aggregation-Induced Emission Properties. Chemistry 2023; 29:e202202594. [PMID: 36318097 DOI: 10.1002/chem.202202594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
The development of circularly polarized thermally activated delayed fluorescence (CP-TADF) luminogens with stimuli-response characteristics remains challenging. Herein, a pair of organic enantiomers, S-CzTA and R-CzTA, with aggregation-induced emission properties, have been successfully developed by introducing chiral 1,2,3,4-tetrahydronaphthalene and carbazole to phthalimide. They present CP-TADF properties in toluene solutions, giving dissymmetric factors of 0.84×10-3 and -1.03×10-3 , respectively. In the crystalline state, both S-CzTA and R-CzTA can emit intense blue TADF and produce very bright sky-blue mechanoluminescence (ML) and remarkable mechanofluorochromism (MFC) under the stimuli of mechanical force. Single-crystal analysis and theoretical calculation results suggest that their ML activities are probably associated with their chiral and polar molecular structures and unique non-centrosymmetric molecular packing modes. Furthermore, the MFC properties of the enantiomers likely originate from the destruction of crystal structure, leading to the planarization of molecular conformation. This work may provide helpful guidance for developing new CP-TADF materials with force-stimuli-responsive properties.
Collapse
Affiliation(s)
- Yitao Zheng
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, P. R. China
| | - Letian Zhang
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, P. R. China
| | - Zihao Huang
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, P. R. China
| | - Shufeng Li
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, P. R. China
| | - Lingqi Zuo
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, P. R. China
| | - Yaohui Liang
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, P. R. China
| | - Cong Liu
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, P. R. China
| | - Suilian Luo
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, P. R. China
| | - Guang Shi
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, P. R. China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Fengqiang Sun
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, P. R. China
| | - Bingjia Xu
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
2
|
Wang Z, Gao L, Zheng Y, Zhu Y, Zhang Y, Zheng X, Wang C, Li Y, Zhao Y, Yang C. Four‐in‐One Stimulus‐Responsive Long‐Lived Luminescent Systems Based on Pyrene‐Doped Amorphous Polymers. Angew Chem Int Ed Engl 2022; 61:e202203254. [DOI: 10.1002/anie.202203254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Zhonghao Wang
- School of Materials Science and Engineering Chongqing University of Technology Chongqing 400054 China
| | - Liang Gao
- School of Materials Science and Engineering Chongqing University of Technology Chongqing 400054 China
| | - Yan Zheng
- School of Materials Science and Engineering Chongqing University of Technology Chongqing 400054 China
| | - Yinyin Zhu
- School of Materials Science and Engineering Chongqing University of Technology Chongqing 400054 China
| | - Yongfeng Zhang
- School of Materials Science and Engineering Chongqing University of Technology Chongqing 400054 China
| | - Xian Zheng
- School of Materials Science and Engineering Chongqing University of Technology Chongqing 400054 China
| | - Chang Wang
- School of Materials Science and Engineering Chongqing University of Technology Chongqing 400054 China
| | - Youbing Li
- School of Materials Science and Engineering Chongqing University of Technology Chongqing 400054 China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Chaolong Yang
- School of Materials Science and Engineering Chongqing University of Technology Chongqing 400054 China
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| |
Collapse
|
3
|
Yao P, Qiao W, Wang Y, Peng H, Xie X, Li Z. Deep-Red Emissive Squaraine-AIEgen in Elastomer Enabling High Contrast and Fast Thermoresponse for Anti-Counterfeiting and Temperature Sensing. Chemistry 2022; 28:e202200725. [PMID: 35294078 DOI: 10.1002/chem.202200725] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Indexed: 12/14/2022]
Abstract
Two challenges remain for organic thermoresponsive materials; one is to develop high-performance red-emissive thermoresponsive materials, while another is to simultaneously achieve high contrast ratio (CR), fast and reversible thermoresponse in a single element. Herein, we not only develop a new deep-red emissive squaraine-based AIEgen (TPE-SQ12) based on a pyrylium end group, which is suitable for fabricating high-performance thermoresponsive materials, but also show an effective approach to improve both CR (∼ten times increase) and response time (less than 3 seconds), that is, molecularly dispersing AIEgen into an elastomer, attributed to the significantly expanded free volume of elastomer upon increasing the temperature that can activate the AIEgen intramolecular movements more pronouncedly. Double encryption and temperature mapping systems have been separately established by using our designed elastomer/TPE-SQ12 film, showing the great potential for anti-counterfeiting and temperature sensing. Finally, white emission is further achieved by co-doping TPE-SQ12 with cyan dye into elastomer, which enables fluorescent thermochromism for improving the temperature mapping ability.
Collapse
Affiliation(s)
- Peigen Yao
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Weiguo Qiao
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yixuan Wang
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Haiyan Peng
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.,National Anti-Counterfeit Engineering Research Center, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xiaolin Xie
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.,National Anti-Counterfeit Engineering Research Center, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zhong'an Li
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
4
|
Wang Z, Gao L, Zheng Y, Zhu Y, Zhang Y, Zheng X, Wang C, Li Y, Zhao Y, Yang C. Four‐in‐One Stimulus‐Responsive Long‐Lived Luminescent Systems Based on Pyrene‐Doped Amorphous Polymers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhonghao Wang
- Chongqing University of Technology School of Materials Science and Engineering CHINA
| | - Liang Gao
- Chongqing University of Technology School of Materials Science and Engineering CHINA
| | - Yan Zheng
- Chongqing University of Technology School of Materials Science and Engineering CHINA
| | - Yinyin Zhu
- Chongqing University of Technology School of Materials Science and Engineering CHINA
| | - Yongfeng Zhang
- Chongqing University of Technology School of Materials Science and Engineering CHINA
| | - Xian Zheng
- Chongqing University of Technology School of Materials Science and Engineering CHINA
| | - Chang Wang
- Chongqing University of Technology School of Materials Science and Engineering CHINA
| | - Youbing Li
- Chongqing University of Technology School of Materials Science and Engineering CHINA
| | - Yanli Zhao
- Nanyang Technological University Division of Chemistry and Biological Chemistry 21 Nanyang Link 637371 Singapore SINGAPORE
| | - Chaolong Yang
- Chongqing University of Technology School of Materials Science and Engineering CHINA
| |
Collapse
|