1
|
Choi Y, Han S, Park BI, Xu Z, Huang Q, Bae S, Kim JS, Kim SO, Meng Y, Kim SI, Moon JY, Roh I, Park JW, Bae SH. Perovskite nanocomposites: synthesis, properties, and applications from renewable energy to optoelectronics. NANO CONVERGENCE 2024; 11:36. [PMID: 39249580 PMCID: PMC11383915 DOI: 10.1186/s40580-024-00440-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/18/2024] [Indexed: 09/10/2024]
Abstract
The oxide and halide perovskite materials with a ABX3 structure exhibit a number of excellent properties, including a high dielectric constant, electrochemical properties, a wide band gap, and a large absorption coefficient. These properties have led to a range of applications, including renewable energy and optoelectronics, where high-performance catalysts are needed. However, it is difficult for a single structure of perovskite alone to simultaneously fulfill the diverse needs of multiple applications, such as high performance and good stability at the same time. Consequently, perovskite nanocomposites have been developed to address the current limitations and enhance their functionality by combining perovskite with two or more materials to create complementary materials. This review paper categorizes perovskite nanocomposites according to their structural composition and outlines their synthesis methodologies, as well as their applications in various fields. These include fuel cells, electrochemical water splitting, CO2 mitigation, supercapacitors, and optoelectronic devices. Additionally, the review presents a summary of their research status, practical challenges, and future prospects in the fields of renewable energy and electronics.
Collapse
Affiliation(s)
- Yunseok Choi
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Sangmoon Han
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Bo-In Park
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Zhihao Xu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
- The Institution of Materials Science and Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Qingge Huang
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Sanggeun Bae
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
- The Institution of Materials Science and Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Justin S Kim
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
- The Institution of Materials Science and Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Sun Ok Kim
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Yuan Meng
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Seung-Il Kim
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
- Department of Energy Systems Research and Department of Materials Science and Engineering, Ajou University, Suwon, 16499, South Korea
| | - Ji-Yun Moon
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Ilpyo Roh
- R&D CENTER, M.O.P Co., Ltd, Seoul, 07281, South Korea
| | - Ji-Won Park
- R&D Center of JB Lab Corporation, Gwanak-Gu, Seoul, 08788, Republic of Korea.
| | - Sang-Hoon Bae
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA.
- The Institution of Materials Science and Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA.
| |
Collapse
|
2
|
He G, Lan Q, Liu M, Wu G, Dunin-Borkowski RE, Jiang H. Multilayered Ceramic Membrane with Ion Conducting Thin Layer Induced by Interface Reaction for Stable Hydrogen Production. Angew Chem Int Ed Engl 2023; 62:e202210485. [PMID: 36329001 DOI: 10.1002/anie.202210485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Indexed: 11/06/2022]
Abstract
Conventional methods for fabricating multilayered ceramic membranes with ion conducting dense thin layers are often cumbersome, costly, and limited by poor adhesion between layers. Inspired by the architectural structure of the rooted grasses in soil, here, we report an interface-reaction-induced reassembly approach for the direct fabrication of Ce0.9 Gd0.1 O2-δ (CGO) thin layers rooted in the parent multilayered ceramic membranes by only one firing step. The CGO dense layers are very thin, and adhered strongly to the parent support layer, ensuring low ionic transport resistance and structural integrity of the multilayered membranes. When using as an oxygen permeable membrane for upgrading fossil-fuel-derived hydrogen, it shows very long durability in harsh conditions containing H2 O, CH4 , H2 , CO2 and H2 S. Furthermore, our approach is highly scalable and applicable to a wide variety of ion conducting thin layers, including Y0.08 Zr0.92 O2-δ , Ce0.9 Sm0.1 O2-δ and Ce0.9 Pr0.1 O2-δ .
Collapse
Affiliation(s)
- Guanghu He
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, China.,Shandong Energy Institute, 189 Songling Road, Qingdao, 266101, China
| | - Qianqian Lan
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute 5 (PGI-5), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
| | - Mengke Liu
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, China
| | - Guixuan Wu
- GTT-Technologies, Kaiserstraße 103, 52134, Herzogenrath, Germany
| | - Rafal E Dunin-Borkowski
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute 5 (PGI-5), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
| | - Heqing Jiang
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, China.,Shandong Energy Institute, 189 Songling Road, Qingdao, 266101, China
| |
Collapse
|