1
|
Kim M, Hong S, Jeong J, Hong S. Visible-Light-Active Coumarin- and Quinolinone-Based Photocatalysts and Their Applications in Chemical Transformations. CHEM REC 2023:e202200267. [PMID: 36627191 DOI: 10.1002/tcr.202200267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/16/2022] [Indexed: 01/12/2023]
Abstract
Organic dyes have been actively studied as useful photocatalysts because they allow access to versatile structural flexibility and green synthetic applications. The identification of a new class of robust organic chromophores is, therefore, in high demand to increase structural diversity and variability. Although coumarins and quinolinones have long been acknowledged as organic chromophores, their ability to participate in photoinduced transformations is somewhat less familiar. Fascinated by their chromophoric features and adaptable platform, our group is interested in the identification of fluorescent bioactive molecules and in the development of new photoinduced synthetic methods using coumarins and quinolinones as photocatalysts. This account provides an overview of our recent progress in the discovery and application of light-absorbing coumarin and quinolinone derivatives in photochemistry and medicinal chemistry.
Collapse
Affiliation(s)
- Myojeong Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seonghyeok Hong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jinwook Jeong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
2
|
Rybicka-Jasińska K, Wdowik T, Łuczak K, Wierzba AJ, Drapała O, Gryko D. Porphyrins as Promising Photocatalysts for Red-Light-Induced Functionalizations of Biomolecules. ACS ORGANIC & INORGANIC AU 2022; 2:422-426. [PMID: 36855670 PMCID: PMC9955257 DOI: 10.1021/acsorginorgau.2c00025] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/01/2022] [Accepted: 07/01/2022] [Indexed: 06/18/2023]
Abstract
Red-light enables deeper material penetration, which is important for biological applications and has consequences for chemical synthesis. Therefore, the search for new photocatalysts that absorb in this region is crucial. Despite the undeniable utility of porphyrins in blue- and green-light-induced energy- and electron-transfer processes, they are also perfectly suited for red-light applications. Herein, we describe free-base porphyrins as photoredox catalysts for red-light-induced organic transformations. They can act as both photooxidants and photoreductants and can accomplish the synthesis of biaryls once merged with Pd-catalysis. The developed methodology holds promise for broader applications, as the heme-based protoporphyrin is used as a photocatalyst and reactions can be realized in aqueous conditions.
Collapse
Affiliation(s)
| | - Tomasz Wdowik
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| | - Klaudia Łuczak
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| | - Aleksandra J. Wierzba
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| | - Olga Drapała
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| | - Dorota Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| |
Collapse
|
3
|
Stump B. Click Bioconjugation - Modifying Proteins using Click-Like Chemistry. Chembiochem 2022; 23:e202200016. [PMID: 35491526 DOI: 10.1002/cbic.202200016] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/27/2022] [Indexed: 11/11/2022]
Abstract
Bioconjugation is dealing with the chemical modification of proteins. The reactions used exploit either the intrinsic chemical reactivity of the biomolecule or introduce functionalities that can then be subsequently reacted without interfering with other functional groups of the biological entity. Perfectly selective, high yielding chemical transformations are needed that can be run in aqueous environment at mild pH conditions. Requirements that have an obvious overlap with the definition of click chemistry. This review shows a selection of successfully applied click-type reactions in bioconjugation as well as some recent developments to broaden the chemical toolbox to meet the challenge of a selective, bioorthogonal modification of biomolecules.
Collapse
Affiliation(s)
- Bernhard Stump
- Lonza AG: Lonza Ltd, Bioconjugates, Rottenstr, 3930, Visp, SWITZERLAND
| |
Collapse
|
4
|
Lapcinska S, Dimitrijevs P, Lapcinskis L, Arsenyan P. Visible Light‐Mediated Functionalization of Selenocystine‐Containing Peptides. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sindija Lapcinska
- Latvian Institute of Organic Synthesis Aizkraukles 21 LV-1006 Riga Latvia
| | - Pavels Dimitrijevs
- Latvian Institute of Organic Synthesis Aizkraukles 21 LV-1006 Riga Latvia
| | - Linards Lapcinskis
- Research Laboratory of Functional Materials Technologies Faculty of Materials Science and Applied Chemistry Riga Technical University P. Valdena 3/7 LV-1048 Riga Latvia
| | - Pavel Arsenyan
- Latvian Institute of Organic Synthesis Aizkraukles 21 LV-1006 Riga Latvia
| |
Collapse
|
5
|
Vellakkaran M, Hong S. Visible‐light‐induced Reactions Driven by Photochemical Activity of Quinolinone and Coumarin Scaffolds. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mari Vellakkaran
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) 34141 Daejeon Korea
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) 34141 Daejeon Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) 34141 Daejeon Korea
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) 34141 Daejeon Korea
| |
Collapse
|