1
|
Zhou ZL, Zhang Y, Cui PZ, Li JH. Photo-/Electrocatalytic Difunctionalization of Alkenes Enabled by C-H Radical Functionalization. Chemistry 2024; 30:e202402458. [PMID: 39126402 DOI: 10.1002/chem.202402458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/12/2024]
Abstract
The difunctionalization of alkenes represents a powerful tool to incorporate two functional groups into the alkene bones for increasing molecular complexity and has been widely utilizations in chemical synthesis. Upon the catalysis of the green, sustainable, mild photo-/electrochemistry technologies, much attentions have been attracted to the development of new tactics for the transformations of the important alkene and alkane feedstocks driven by C-H radical functionalization. Herein, we summarize recent advances in the photo-/electrocatalytic difunctionalization of alkenes enabled by C-H radical functionalization. We detailedly discuss the substrate scope and the mechanisms of the photo-/electrocatalytic alkene difunctionalization reactions by selecting impressive synthetic examples, which are divided into four sections based on the final terminated step, including oxidative radical-polar crossover coupling, reductive radical-polar crossover coupling, radical-radical coupling, and transition-metal-catalyzed coupling.
Collapse
Affiliation(s)
- Zi-Long Zhou
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yin Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Pei-Zhe Cui
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jin-Heng Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
2
|
Yue Y, Guo X, Zhang J, Zhang Z, Zhang Y, Tang Q, Bai R, Yi H, Liu J. Electrochemical Oxidation Enables Radical Dearomative Spiroannulation to 2H-Spiro[benzofuran-3,9'-fluoren]-2-one. Chemistry 2024; 30:e202401303. [PMID: 38794842 DOI: 10.1002/chem.202401303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Developing pragmatic strategies for accessing functional benzofuran-2-ones from 3-([1,1'-biphenyl]-2-yl)benzofuran remains an enduring challenge. Herein, we have achieved a highly discriminating electrochemical oxidative dearomative spiroannulation of 3-([1,1'-biphenyl]-2-yl)benzofuran, culminating in the synthesis of 2H-spiro[benzofuran-3,9'-fluoren]-2-one derivatives. By harnessing the electrophilic intermediates of benzofuryl radical cations supported by DFT calculations, we attain exceptional regioselectivity while eliminating the need for stoichiometric oxidants. Mechanistic investigations reveal a sequence of events involving the benzofuran radical cation, encompassing the capture of H2O, nucleophilic arene attack, and subsequent deprotonation, ultimately yielding the final benzofuran-2-ones.
Collapse
Affiliation(s)
- Yuanyuan Yue
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China
| | - Xiaohui Guo
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China
| | - Jianhang Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China
| | - Zhiqiang Zhang
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Yilin Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China
| | - Qinghu Tang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China
| | - Ruopeng Bai
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 401331, P. R. China
| | - Hong Yi
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Jianming Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China
| |
Collapse
|
3
|
Yu W, Wang S, He M, Jiang Z, Yu Y, Lan J, Luo J, Wang P, Qi X, Wang T, Lei A. Electroreduction Enables Regioselective 1,2‐Diarylation of Alkenes with Two Electrophiles. Angew Chem Int Ed Engl 2023. [DOI: 10.1002/ange.202219166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Weijie Yu
- National Research Center for Carbohydrate Synthesis Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education and Jiangxi Province Key Laboratory of Chemical Biology Jiangxi Normal University Nanchang 330022, Jiangxi P. R. China
| | - Shengchun Wang
- The Institute for Advanced Studies (IAS) and College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072, Hubei P. R. China
| | - Meng He
- The Institute for Advanced Studies (IAS) and College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072, Hubei P. R. China
| | - Zhou Jiang
- National Research Center for Carbohydrate Synthesis Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education and Jiangxi Province Key Laboratory of Chemical Biology Jiangxi Normal University Nanchang 330022, Jiangxi P. R. China
| | - Yi Yu
- The Institute for Advanced Studies (IAS) and College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072, Hubei P. R. China
| | - Jinping Lan
- National Research Center for Carbohydrate Synthesis Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education and Jiangxi Province Key Laboratory of Chemical Biology Jiangxi Normal University Nanchang 330022, Jiangxi P. R. China
| | - Jin Luo
- National Research Center for Carbohydrate Synthesis Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education and Jiangxi Province Key Laboratory of Chemical Biology Jiangxi Normal University Nanchang 330022, Jiangxi P. R. China
| | - Pengjie Wang
- The Institute for Advanced Studies (IAS) and College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072, Hubei P. R. China
| | - Xiaotian Qi
- The Institute for Advanced Studies (IAS) and College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072, Hubei P. R. China
| | - Tao Wang
- National Research Center for Carbohydrate Synthesis Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education and Jiangxi Province Key Laboratory of Chemical Biology Jiangxi Normal University Nanchang 330022, Jiangxi P. R. China
| | - Aiwen Lei
- National Research Center for Carbohydrate Synthesis Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education and Jiangxi Province Key Laboratory of Chemical Biology Jiangxi Normal University Nanchang 330022, Jiangxi P. R. China
- The Institute for Advanced Studies (IAS) and College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072, Hubei P. R. China
| |
Collapse
|
4
|
Yu W, Wang S, He M, Jiang Z, Yu Y, Lan J, Luo J, Wang P, Qi X, Wang T, Lei A. Electroreduction Enables Regioselective 1,2-Diarylation of Alkenes with Two Electrophiles. Angew Chem Int Ed Engl 2023; 62:e202219166. [PMID: 36826413 DOI: 10.1002/anie.202219166] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 02/25/2023]
Abstract
Precisely introducing two similar functional groups into bulk chemical alkenes represents a formidable route to complex molecules. Especially, the selective activation of two electrophiles is in crucial demand, yet challenging for cross-electrophile-coupling. Herein, we demonstrate a redox-mediated electrolysis, in which aryl nitriles are both aryl radical precursors and redox-mediators, enables an intermolecular alkene 1,2-diarylation with a remarkable regioselectivity, thereby avoiding the involvement of transition-metal catalysts. This transformation utilizes cyanoarene radical anions for activating various aryl halides (including iodides, bromides, and even chlorides) and affords 1,2-diarylation adducts in up to 83 % yield and >20 : 1 regioselectivity with more than 80 examples, providing a feasible approach to complex bibenzyl derivatives.
Collapse
Affiliation(s)
- Weijie Yu
- National Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education and Jiangxi Province Key Laboratory of Chemical Biology, Jiangxi Normal University, Nanchang, 330022, Jiangxi, P. R. China
| | - Shengchun Wang
- The Institute for Advanced Studies (IAS) and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Meng He
- The Institute for Advanced Studies (IAS) and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Zhou Jiang
- National Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education and Jiangxi Province Key Laboratory of Chemical Biology, Jiangxi Normal University, Nanchang, 330022, Jiangxi, P. R. China
| | - Yi Yu
- The Institute for Advanced Studies (IAS) and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Jinping Lan
- National Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education and Jiangxi Province Key Laboratory of Chemical Biology, Jiangxi Normal University, Nanchang, 330022, Jiangxi, P. R. China
| | - Jin Luo
- National Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education and Jiangxi Province Key Laboratory of Chemical Biology, Jiangxi Normal University, Nanchang, 330022, Jiangxi, P. R. China
| | - Pengjie Wang
- The Institute for Advanced Studies (IAS) and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Xiaotian Qi
- The Institute for Advanced Studies (IAS) and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Tao Wang
- National Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education and Jiangxi Province Key Laboratory of Chemical Biology, Jiangxi Normal University, Nanchang, 330022, Jiangxi, P. R. China
| | - Aiwen Lei
- National Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education and Jiangxi Province Key Laboratory of Chemical Biology, Jiangxi Normal University, Nanchang, 330022, Jiangxi, P. R. China.,The Institute for Advanced Studies (IAS) and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| |
Collapse
|
5
|
Pozhydaiev V, Vayer M, Fave C, Moran J, Lebœuf D. Synthesis of Unprotected β-Arylethylamines by Iron(II)-Catalyzed 1,2-Aminoarylation of Alkenes in Hexafluoroisopropanol. Angew Chem Int Ed Engl 2023; 62:e202215257. [PMID: 36541580 DOI: 10.1002/anie.202215257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
β-Arylethylamines are prevalent structural motifs in molecules exhibiting biological activity. Here we report a sequential one-pot protocol for the 1,2-aminoarylation of alkenes with hydroxylammonium triflate salts and (hetero)arenes. Unlike existing methods, this reaction provides a direct entry to unprotected β-arylethylamines with remarkable functional group tolerance, allowing key drug-oriented functional groups to be installed in a two-step process. The use of hexafluoroisopropanol as a solvent in combination with an iron(II) catalyst proved essential to reaching high-value nitrogen-containing molecules.
Collapse
Affiliation(s)
- Valentyn Pozhydaiev
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| | - Marie Vayer
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| | - Claire Fave
- Laboratoire d'Electrochimie Moléculaire, Université Paris Cité, 75013, Paris, France
| | - Joseph Moran
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France.,Institut Universitaire de France (IUF), 75005, Paris, France
| | - David Lebœuf
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| |
Collapse
|
6
|
Zhao Z, Liu Y, Wang S, Tang S, Ma D, Zhu Z, Guo C, Qiu Y. Site-Selective Electrochemical C-H Carboxylation of Arenes with CO 2. Angew Chem Int Ed Engl 2023; 62:e202214710. [PMID: 36382417 DOI: 10.1002/anie.202214710] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Indexed: 11/18/2022]
Abstract
Herein, a direct, metal-free, and site-selective electrochemical C-H carboxylation of arenes by reductive activation using CO2 as the economic and abundant carboxylic source was reported. The electrocarboxylation was carried out in an operationally simple manner with high chemo- and regioselectivity, setting the stage for the challenging site-selective C-H carboxylation of unactivated (hetero)arenes. The robust nature of the electrochemical strategy was reflected by a broad scope of substrates with excellent atom economy and unique selectivity. Notably, the direct and selective C-H carboxylation of various challenging arenes worked well in this approach, including electron-deficient naphthalenes, pyridines, simple phenyl derivatives, and substituted quinolines. The method benefits from being externally catalyst-free, metal-free and base-free, which makes it extremely attractive for potential applications.
Collapse
Affiliation(s)
- Zhiwei Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yin Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Siyi Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Shunyao Tang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Dengke Ma
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Zile Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Chengcheng Guo
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
7
|
DBU-promoted synthesis of novel heterocyclic [4.3.3] propellanes from α‑cyanoketones and cyclic α-diketones. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Feng T, Wang S, Liu Y, Liu S, Qiu Y. Electrochemical Desaturative β‐Acylation of Cyclic
N
‐Aryl Amines. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tian Feng
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Siyi Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Yin Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Shouzhuo Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| |
Collapse
|
9
|
Wang D, Wan Z, Zhang H, Alhumade H, Yi H, Lei A. Electrochemical Reductive Arylation of Nitroarenes with Arylboronic Acids. CHEMSUSCHEM 2021; 14:5399-5404. [PMID: 34581006 DOI: 10.1002/cssc.202101924] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/26/2021] [Indexed: 06/13/2023]
Abstract
The synthesis of diarylamine is extremely important in organic chemistry. Herein, a novel electrochemical reductive arylation of nitroarenes with arylboronic acids was developed. A variety of diarylamines were synthesized without the need for transition-metal catalysts. The reaction could be scaled up efficiently in a flow cell and several derivatization reactions were carried out smoothly. Cyclic voltammetry experiments and mechanism studies showed that acetonitrile, formic acid, and triethyl phosphite all played a role in promoting this reductive arylation transformation.
Collapse
Affiliation(s)
- Dan Wang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Wuhan University, Wuhan, 430072, P. R. China
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, P. R. China
| | - Zhaohua Wan
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Wuhan University, Wuhan, 430072, P. R. China
| | - Heng Zhang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Wuhan University, Wuhan, 430072, P. R. China
| | - Hesham Alhumade
- Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, Jdedah, 21589, Saudi Arabia
- Center of Research Excellence in Renewable Energy and Power Systems, King Abdulaziz University, Jdedah, 21589, Saudi Arabia
| | - Hong Yi
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Wuhan University, Wuhan, 430072, P. R. China
| | - Aiwen Lei
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Wuhan University, Wuhan, 430072, P. R. China
- King Abdulaziz University, Jdedah, 21589, Saudi Arabia
| |
Collapse
|
10
|
Feng T, Wang S, Liu Y, Liu S, Qiu Y. Electrochemical Desaturative β-Acylation of Cyclic N-Aryl Amines. Angew Chem Int Ed Engl 2021; 61:e202115178. [PMID: 34878215 DOI: 10.1002/anie.202115178] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Indexed: 12/15/2022]
Abstract
Herein, we disclose a straightforward, robust, and simple route to access β-substituted desaturated cyclic amines via an electrochemically driven desaturative β-functionalization of cyclic amines. This transformation is based on multiple single-electron oxidation processes using catalytic amounts of ferrocene. The reaction proceeds in the absence of stoichiometric amounts of electrolyte under mild conditions, affording the desired products with high chemo- and regioselectivity. The reaction was tolerant of a broad range of substrates and also enables late-stage β-C(sp3 )-H acylation of potentially valuable products. Preliminary mechanistic studies using cyclic voltammetry reveal the key role of ferrocene as a redox mediator in the reaction.
Collapse
Affiliation(s)
- Tian Feng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Siyi Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yin Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Shouzhuo Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
11
|
Thadathil DA, Varghese A, Radhakrishnan KV. The Renaissance of Electro‐Organic Synthesis for the Difunctionalization of Alkenes and Alkynes: A Sustainable Approach. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100447] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ditto Abraham Thadathil
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bengaluru, Karnataka 560029 India
| | - Anitha Varghese
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bengaluru, Karnataka 560029 India
| | - Kokkuvayil Vasu Radhakrishnan
- Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695019 India
| |
Collapse
|
12
|
Ke J, Liu W, Zhu X, Tan X, He C. Electrochemical Radical Silyl‐Oxygenation of Activated Alkenes. Angew Chem Int Ed Engl 2021; 60:8744-8749. [DOI: 10.1002/anie.202016620] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/28/2021] [Indexed: 01/03/2023]
Affiliation(s)
- Jie Ke
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Wentan Liu
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Xujiang Zhu
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Xingfa Tan
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
13
|
Ke J, Liu W, Zhu X, Tan X, He C. Electrochemical Radical Silyl‐Oxygenation of Activated Alkenes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jie Ke
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Wentan Liu
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Xujiang Zhu
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Xingfa Tan
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|