1
|
Tan H, Zhou P, Liu M, Gu Y, Chen W, Guo H, Zhang J, Yin K, Zhou Y, Shang C, Zhang Q, Gu L, Zhang N, Ma J, Zheng Z, Luo M, Guo S. Al-N 3 Bridge Site Enabling Interlayer Charge Transfer Boosts the Direct Photosynthesis of Hydrogen Peroxide from Water and Air. J Am Chem Soc 2024; 146:31950-31960. [PMID: 39500575 DOI: 10.1021/jacs.4c11471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Manipulating the electronic environment of the reactive center to lower the energy barrier of the rate-determining water oxidation step for boosting the direct generation of H2O2 from water, air, and sunlight is fascinating yet remains a grand challenge. Driven by a first-principles screening across a series of metal single atoms in carbon nitride, we report a class of an Al-N3 bridge site enabling interlayer charge transfer in carbon nitride nanotubes (CNNT-Al) for the highly efficient photosynthesis of H2O2 directly from water, oxygen, and sunlight. We demonstrate that the interlayered Al-N3 bridge site in CNNT-Al is able to activate the neighboring surface N atom for promoting the rate-determining step of the two-electron water oxidation to H2O2. It is also able to act as a bridge for enhancing the vertical interlaminar charge transfer due to the hybridization between the 3s and 3p states of the interstitial Al atom and the conduction band of two adjacent carbon nitride layers. Collectively, these factors lead to a highest photocatalytic mass activity of 1410.2 μmol g-1 h-1 (with a photocatalyst concentration of 1 g L-1) for direct photosynthesis of H2O2 out of all CN-based photocatalysts and a 7-fold higher solar-to-chemical conversion efficiency (0.73%) compared to that of the natural photosynthesis of typical plants (∼0.1%). Most importantly, the CNNT-Al-based flow reactor can steadily produce H2O2 for 200 h and be directly used for the on-site degradation of organic dye in water. The CNNT-Al-based flow reactor can also kill a 10 times higher concentration of bacteria in deionized water than that in natural water with 100% efficiency, which makes our design economically appealing for practical water treatment.
Collapse
Affiliation(s)
- Hao Tan
- School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, P.R. China
| | - Peng Zhou
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, P.R. China
| | - Meixian Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, P.R. China
| | - Yu Gu
- School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Wenxing Chen
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Hongyu Guo
- School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Jiankang Zhang
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, P.R. China
| | - Kun Yin
- School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Yin Zhou
- School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Changshuai Shang
- School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Qinghua Zhang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100871, P.R. China
| | - Lin Gu
- Institute of Physics, Chinese Academy of Sciences, Beijing 100871, P.R. China
| | - Nian Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, P.R. China
| | - Jingyuan Ma
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, P.R. China
| | - Zhanfeng Zheng
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, P.R. China
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
- The Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing 100871, P.R. China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
- The Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing 100871, P.R. China
| |
Collapse
|
2
|
Xie S, Liu R, Liu N, Xu H, Chen X, Wang X, Jiang D. Vertically Expanded Covalent Organic Frameworks for Photocatalytic Water Oxidation into Oxygen. Angew Chem Int Ed Engl 2024:e202416771. [PMID: 39502043 DOI: 10.1002/anie.202416771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Indexed: 11/21/2024]
Abstract
Covalent organic frameworks with unique π architectures and pores could be developed as photocatalysts for transformations. However, they usually form π-stacking layers, so that only surface layers function in photocatalysis. Here we report a strategy for developing vertically expanded frameworks to expose originally inaccessible active sites hidden in layers to catalysis. We designed covalently linked two-dimensional cobalt(II) porphyrin layers and explored coordination bonds to connect the cobalt(II) porphyrin layers with bidentate ligands via a three-component one-pot polymerization. The resultant frameworks expand the interlayer space greatly, where both the up and down faces of each cobalt(II) porphyrin layer are exposed to reactants. Unexpectedly, the vertically expanded frameworks increase skeleton oxidation potentials, decrease exciton dissociation energy, improve pore hydrophilicity and affinity to water, and facilitate water delivery. Remarkably, these positive effects work collectively in the photocatalysis of water oxidation into oxygen, with an oxygen production rate of 1155 μmol g-1 h-1, a quantum efficiency of 1.24 % at 450 nm, and a turnover frequency of 1.39 h-1, which is even 5.1-fold as high as that of the π-stacked frameworks and ranks them the most effective photocatalysts. This strategy offers a new platform for designing layer frameworks to build various catalytic systems for chemical transformations.
Collapse
Affiliation(s)
- Shuailei Xie
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai NewCity, Fuzhou, 350207, China
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Ruoyang Liu
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Nengyi Liu
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecular Synthesis and Function Discovery College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Hetao Xu
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecular Synthesis and Function Discovery College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Xiong Chen
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecular Synthesis and Function Discovery College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecular Synthesis and Function Discovery College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Donglin Jiang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai NewCity, Fuzhou, 350207, China
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
3
|
Zadehnazari A, Khosropour A, Altaf AA, Rosen AS, Abbaspourrad A. Tetrazine-Linked Covalent Organic Frameworks With Acid Sensing and Photocatalytic Activity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311042. [PMID: 38140890 DOI: 10.1002/adma.202311042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/29/2023] [Indexed: 12/24/2023]
Abstract
The first synthesis and comprehensive characterization of two vinyl tetrazine-linked covalent organic frameworks (COF), TA-COF-1 and TA-COF-2, are reported. These materials exhibit high crystallinity and high specific surface areas of 1323 and 1114 m2 g-1. The COFs demonstrate favorable band positions and narrow band gaps suitable for light-driven applications. These advantages enable TA-COFs to act as reusable metal-free photocatalysts in the arylboronic acids oxidation and light-induced coupling of benzylamines. In addition, these TA-COFs show acid sensing capabilities, exhibiting visible and reversible color changes upon exposure to HCl solution, HCl vapor, and NH3 vapor. Further, the TA-COFs outperform a wide range of previously reported COF photocathodes. The tetrazine linker in the COF skeleton represents a significant advancement in the field of COF synthesis, enhancing the separation efficiency of charge carriers during the photoreaction and contributing to their photocathodic properties. TA-COFs can also degrade 5-nitro-1,2,4-triazol-3-one (NTO), an insensitive explosive present in industrial wastewater, in 20 min in a sunlight-driven photocatalytic process; thus, revealing dual functionality of the protonated TA-COFs as both photodegradation and Brønsted acid catalysts. This pioneering work opens new avenues for harnessing the potential of the tetrazine linker in COF-based materials, facilitating advances in catalysis, sensing, and other related fields.
Collapse
Affiliation(s)
- Amin Zadehnazari
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| | - Ahmadreza Khosropour
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| | - Ataf Ali Altaf
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| | - Andrew S Rosen
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| |
Collapse
|
4
|
Wang N, Yang WH, Wang RX, Li ZJ, Xu XF, Long YZ, Zhang HD. Oxygen Vacancy-Enhanced Centrosymmetric Breaking of SrFeO 3- x for Piezoelectric-Catalyzed Synthesis of H 2 O 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2307291. [PMID: 37964162 DOI: 10.1002/smll.202307291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/14/2023] [Indexed: 11/16/2023]
Abstract
Normally, only noncentrosymmetric structure of the materials can potentially be piezoelectric. Thus, it is limited in the field of piezoelectricity for the centrosymmetric structure of the material. In this work, the performance of piezoelectricity is successfully achieved from centrosymmetric SrFeO3- x by modulating oxygen vacancies, which have a surface piezoelectric potential up to 93 mV by using Kelvin-probe force microscopy (KPFM). Moreover, the piezoelectric effects of SrFeO3- x are also evaluated by piezoelectric catalytic effect and density functional theory calculations (DFT). The results show that the piezo-catalytic degradation of tetracycline reaches 96% after 75 min by ultrasonic mechanical vibration and the production of H2 O2 by SrFeO3- x piezoelectric synthesis could reach 1821 µmol L-1 . In addition, the DFT results indicate that the intrinsic effect of oxygen vacancies effectively promotes the adsorption and activation of O2 and H2 O as well as intermediates and improves the piezoelectric catalytic activity. This work provides an effective basis for realizing the piezoelectricity of centrosymmetric materials and regulating the development of piezoelectric catalytic properties.
Collapse
Affiliation(s)
- Nan Wang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao, 266071, China
| | - Wen-Hua Yang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao, 266071, China
| | - Rong-Xu Wang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao, 266071, China
| | - Zhao-Jian Li
- Department of Neurosurgery, Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266003, China
| | - Xiao-Feng Xu
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao, 266071, China
| | - Yun-Ze Long
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao, 266071, China
| | - Hong-Di Zhang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
5
|
Qin N, Mao A, Li L, Lin C, Zhai L, Liu J, Zou J, Cui CX, Mi L. Rational Design of Vinylene-Linked Covalent Organic Frameworks for Modulating Photocatalytic H 2 Evolution. CHEMSUSCHEM 2023; 16:e202300872. [PMID: 37466030 DOI: 10.1002/cssc.202300872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 07/20/2023]
Abstract
Vinylene-linked covalent organic frameworks (COFs) have attracted enormous attention for photocatalytic H2 evolution from water because of their fully conjugated structures, high chemical stabilities, and enhanced charge-carrier mobilities. In this work, two novel vinylene-linked COFs with tuned cyano contents were successfully synthesized and then employed as photocatalysts for H2 generation. Notably, the photocatalytic H2 production rate of the COF with the higher cyano content reached 73 μmol h-1 under visible light irradiation, which is 2.4 times higher than that with the lower content (30 μmol h-1 ). Both the experimental and computational results demonstrated that the rational design incorporating cyano groups into COF skeletons could precisely tune the corresponding energy levels, expand the visible-light absorption, and improve the photoinduced charge separation. This work not only provides a simple method for modulating the photocatalytic activities of COFs at the molecular level, but also affords interesting insights into the relationship between their structures and photocatalytic performance.
Collapse
Affiliation(s)
- Na Qin
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Aojie Mao
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Linqiang Li
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Chao Lin
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Lipeng Zhai
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Jing Liu
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Junhua Zou
- Institute of Energy Research, Jiangxi Academy of Sciences, Nanchang, 330029, P.R. China
| | - Cheng-Xing Cui
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, P. R. China
| | - Liwei Mi
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| |
Collapse
|
6
|
Ye L, Xia Z, Xu Q, Yang Y, Xu X, Jin H, Wang S. Controllable synthesis of hollow COFs for boosting photocatalytic hydrogen generation. Chem Commun (Camb) 2023; 59:9872-9875. [PMID: 37492902 DOI: 10.1039/d3cc02914j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
COF-LZU1 with a cubic hollow structure was fabricated through a hard template approach by using water solvable NaCl as a template. The precisely prepared COF-LZU1 hollow cube displays an enhanced H2 evolution rate (651 μmol h-1 g-1), which is approximately 1.8 times greater than that of pristine COF-LZU1 (361 μmol h-1 g-1).
Collapse
Affiliation(s)
- Langhuan Ye
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China.
| | - Zhihua Xia
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Quanlong Xu
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China.
| | - Yun Yang
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China.
| | - Xiangju Xu
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China.
| | - Huile Jin
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China.
| | - Shun Wang
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China.
| |
Collapse
|
7
|
Chen D, Chen W, Wu Y, Wang L, Wu X, Xu H, Chen L. Covalent Organic Frameworks Containing Dual O 2 Reduction Centers for Overall Photosynthetic Hydrogen Peroxide Production. Angew Chem Int Ed Engl 2023; 62:e202217479. [PMID: 36576381 DOI: 10.1002/anie.202217479] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 12/29/2022]
Abstract
Covalent organic frameworks (COFs) are highly desirable for achieving high-efficiency overall photosynthesis of hydrogen peroxide (H2 O2 ) via molecular design. However, precise construction of COFs toward overall photosynthetic H2 O2 remains a great challenge. Herein, we report the crystalline s-heptazine-based COFs (HEP-TAPT-COF and HEP-TAPB-COF) with separated redox centers for efficient H2 O2 production from O2 and pure water. The spatially and orderly separated active sites in HEP-COFs can efficiently promote charge separation and enhance photocatalytic H2 O2 production. Compared with HEP-TAPB-COF, HEP-TAPT-COF exhibits higher H2 O2 production efficiency for integrating dual O2 reduction active centers of s-heptazine and triazine moieties. Accordingly, HEP-TAPT-COF bearing dual O2 reduction centers exhibits a remarkable solar-to-chemical energy efficiency of 0.65 % with a high apparent quantum efficiency of 15.35 % at 420 nm, surpassing previously reported COF-based photocatalysts.
Collapse
Affiliation(s)
- Dan Chen
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, China
| | - Weiben Chen
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, China
| | - Yuting Wu
- Department of Polymer Science and Engineering, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Lei Wang
- Department of Polymer Science and Engineering, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaojun Wu
- Department of Polymer Science and Engineering, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Hangxun Xu
- Department of Polymer Science and Engineering, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Long Chen
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, China.,State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
8
|
Ji H, Yan G, Zou P, Wang H, Li M, Feng Y, Qu X, Geng D, Shi J, Zhang X. Synthesis of Vinylene-Linked Thiopyrylium-, Pyrylium-, and Pyridinium-Based Covalent Organic Frameworks by Acid-Catalyzed Aldol Condensation. Chemistry 2023; 29:e202202787. [PMID: 36196504 DOI: 10.1002/chem.202202787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Indexed: 11/12/2022]
Abstract
The development of new vinylene-linked covalent organic frameworks (COFs) with special ionic structure and high stability is challenging. Herein, we report a facile, general method for constructing ionic vinylene-linked thiopyrylium-based COFs from 2,4,6-trimethylpyrylium tetrafluoroborate and other common reagents by means of acid-catalyzed Aldol condensation. Besides, pyrylium-, and pyridinium-based COFs also can be prepared from the same monomer under slightly different reaction conditions. The COFs exhibited uniform nanofibrous morphologies with excellent crystallinities, special ionic structures, well-defined nanochannels, and high specific surface areas.
Collapse
Affiliation(s)
- Haifeng Ji
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Street, Tianjin, 300130, P. R. China
| | - Gaojie Yan
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Street, Tianjin, 300130, P. R. China
| | - Peng Zou
- Downhole Technology Service Company, Bohai Drilling Engineering Company Limited, CNPC, Dagang, Tianjin, 300283, P. R. China
| | - Han Wang
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Street, Tianjin, 300130, P. R. China
| | - Mengke Li
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Street, Tianjin, 300130, P. R. China
| | - Yi Feng
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Street, Tianjin, 300130, P. R. China
| | - Xiongwei Qu
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Street, Tianjin, 300130, P. R. China
| | - Dongling Geng
- College of Science, Civil Aviation University of China, Tianjin, 300300, P. R. China
| | - Jingjing Shi
- School of Science, Nantong University, Nantong, 226019, Jiangsu Province, P. R. China
| | - Xiaojie Zhang
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Street, Tianjin, 300130, P. R. China
| |
Collapse
|
9
|
Ma S, Deng T, Li Z, Zhang Z, Jia J, Wu G, Xia H, Yang S, Liu X. Photocatalytic Hydrogen Production on a sp
2
‐Carbon‐Linked Covalent Organic Framework. Angew Chem Int Ed Engl 2022; 61:e202208919. [DOI: 10.1002/anie.202208919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Indexed: 01/26/2023]
Affiliation(s)
- Si Ma
- College of Chemistry Jilin University Changchun 130012 P.R. China
| | - Tianqi Deng
- Institute of Advanced Semiconductors & Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311200 P.R. China
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering Zhejiang University Hangzhou 310027 P.R. China
| | - Ziping Li
- College of Chemistry Jilin University Changchun 130012 P.R. China
| | - Zhenwei Zhang
- College of Chemistry Jilin University Changchun 130012 P.R. China
| | - Ji Jia
- College of Chemistry Jilin University Changchun 130012 P.R. China
| | - Gang Wu
- Institute of High Performance Computing Agency for Science, Technology and Research 1 Fusionopolis Way, #16-16 Connexis Singapore 138632
| | - Hong Xia
- State Key Laboratory on Integrated Optoelectronics College of Electronic Science and Technology Jilin University Changchun 130012 P.R. China
| | - Shuo‐Wang Yang
- Institute of High Performance Computing Agency for Science, Technology and Research 1 Fusionopolis Way, #16-16 Connexis Singapore 138632
| | - Xiaoming Liu
- College of Chemistry Jilin University Changchun 130012 P.R. China
| |
Collapse
|
10
|
Lu Z, Zhao R, Yang H, Fu X, Zhao Y, Xiao L, Hou L. Influence of the Building Unit on Covalent Organic Frameworks in Mediating Photo‐induced Energy‐Transfer Reversible Complexation‐Mediated Radical Polymerization (PET‐RCMP). Angew Chem Int Ed Engl 2022; 61:e202208898. [DOI: 10.1002/anie.202208898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Zhen Lu
- Qingyuan Innovation Laboratory Quanzhou 362801 P. R. China
- College of Chemistry Fuzhou University No. 2 Xueyuan Road Fuzhou 350116 P. R. China
| | - Rui Zhao
- Qingyuan Innovation Laboratory Quanzhou 362801 P. R. China
| | - Hongjie Yang
- Department of Materials-Oriented Chemical Engineering School of Chemical Engineering Fuzhou University No. 2 Xueyuan Road Fuzhou 350116 P. R. China
| | - Xiaoling Fu
- Department of Materials-Oriented Chemical Engineering School of Chemical Engineering Fuzhou University No. 2 Xueyuan Road Fuzhou 350116 P. R. China
| | - Yulai Zhao
- Qingyuan Innovation Laboratory Quanzhou 362801 P. R. China
- Department of Materials-Oriented Chemical Engineering School of Chemical Engineering Fuzhou University No. 2 Xueyuan Road Fuzhou 350116 P. R. China
- Fujian Key Laboratory of Advanced Manufacturing Technology of Specialty Chemicals Fuzhou University No. 2 Xueyuan Road Fuzhou 350116 P. R. China
| | - Longqiang Xiao
- Qingyuan Innovation Laboratory Quanzhou 362801 P. R. China
- Department of Materials-Oriented Chemical Engineering School of Chemical Engineering Fuzhou University No. 2 Xueyuan Road Fuzhou 350116 P. R. China
- Fujian Key Laboratory of Advanced Manufacturing Technology of Specialty Chemicals Fuzhou University No. 2 Xueyuan Road Fuzhou 350116 P. R. China
| | - Linxi Hou
- Qingyuan Innovation Laboratory Quanzhou 362801 P. R. China
- Department of Materials-Oriented Chemical Engineering School of Chemical Engineering Fuzhou University No. 2 Xueyuan Road Fuzhou 350116 P. R. China
- Fujian Key Laboratory of Advanced Manufacturing Technology of Specialty Chemicals Fuzhou University No. 2 Xueyuan Road Fuzhou 350116 P. R. China
| |
Collapse
|
11
|
Photocatalytic Hydrogen Production on a sp2‐Carbon‐Linked Covalent Organic Framework. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Lu Z, Zhao R, Yang H, Fu X, Zhao Y, Xiao L, Hou L. Influence of Building Unit on the Covalent Organic Framework in Mediating Photo‐induced PET‐RCMP. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhen Lu
- Fuzhou University Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering CHINA
| | - Rui Zhao
- Fuzhou University Qingyuan Innovation Laboratory CHINA
| | - Hongjie Yang
- Fuzhou University Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering xueyuan road,2 350116 fuzhou CHINA
| | - Xiaoling Fu
- Fuzhou University Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering xueyuan road,2 350116 fuzhou CHINA
| | - Yulai Zhao
- Fuzhou University Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering CHINA
| | - Longqiang Xiao
- Fuzhou University Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering CHINA
| | - Linxi Hou
- Fuzhou University Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering Xueyuan Road No. 2, Fuzhou 350116, China CHINA
| |
Collapse
|
13
|
Qiao H, Yang L, Yang X, Wang J, Chen Y, Zhang L, Sun W, Zhai L, Mi L. Design of Photoactive Covalent Organic Frameworks as Heterogeneous Catalyst for Preparation of Thiophosphinates from Phosphine Oxides and Thiols. Chemistry 2022; 28:e202200600. [DOI: 10.1002/chem.202200600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Indexed: 12/25/2022]
Affiliation(s)
- Huijie Qiao
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Henan 450007 P. R. China
- School of Materials and Chemical Engineering Zhongyuan University of Technology Henan 450007 P. R. China
| | - Liting Yang
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Henan 450007 P. R. China
- School of Materials and Chemical Engineering Zhongyuan University of Technology Henan 450007 P. R. China
| | - Xiubei Yang
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Henan 450007 P. R. China
- School of Materials and Chemical Engineering Zhongyuan University of Technology Henan 450007 P. R. China
| | - Jialin Wang
- School of Materials and Chemical Engineering Zhongyuan University of Technology Henan 450007 P. R. China
| | - Ya Chen
- School of Materials and Chemical Engineering Zhongyuan University of Technology Henan 450007 P. R. China
| | - Lin Zhang
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Henan 450007 P. R. China
| | - Wuxuan Sun
- School of Materials and Chemical Engineering Zhongyuan University of Technology Henan 450007 P. R. China
| | - Lipeng Zhai
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Henan 450007 P. R. China
| | - Liwei Mi
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Henan 450007 P. R. China
| |
Collapse
|
14
|
Lan ZA, Wu M, Fang Z, Zhang Y, Chen X, Zhang G, Wang X. Ionothermal Synthesis of Covalent Triazine Frameworks in a NaCl-KCl-ZnCl 2 Eutectic Salt for the Hydrogen Evolution Reaction. Angew Chem Int Ed Engl 2022; 61:e202201482. [PMID: 35218273 DOI: 10.1002/anie.202201482] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 11/09/2022]
Abstract
Covalent triazine-based frameworks (CTFs) are typically produced by the salt-melt polycondensation of aromatic nitriles in the presence of ZnCl2 . In this reaction, molten ZnCl2 salt acts as both a solvent and Lewis acid catalyst. However, when cyclotrimerization takes place at temperatures above 300 °C, undesired carbonization occurs. In this study, an ionothermal synthesis method for CTF-based photocatalysts was developed using a ternary NaCl-KCl-ZnCl2 eutectic salt (ES) mixture with a melting point of approximately 200 °C. This temperature is lower than the melting point of pure ZnCl2 (318 °C), thus providing milder salt-melt conditions. These conditions facilitated the polycondensation process, while avoiding carbonization of the polymeric backbone. The resulting CTF-ES200 exhibited enhanced optical and electronic properties, and displayed remarkable photocatalytic performance in the hydrogen evolution reaction.
Collapse
Affiliation(s)
- Zhi-An Lan
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P.R. China.,College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Meng Wu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P.R. China
| | - Zhongpu Fang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P.R. China
| | - Yongfan Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P.R. China
| | - Xiong Chen
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P.R. China
| | - Guigang Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P.R. China
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P.R. China
| |
Collapse
|
15
|
Zou Y, Abednatanzi S, Gohari Derakhshandeh P, Mazzanti S, Schüßlbauer CM, Cruz D, Van Der Voort P, Shi JW, Antonietti M, Guldi DM, Savateev A. Red edge effect and chromoselective photocatalysis with amorphous covalent triazine-based frameworks. Nat Commun 2022; 13:2171. [PMID: 35449208 PMCID: PMC9023581 DOI: 10.1038/s41467-022-29781-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/14/2022] [Indexed: 11/08/2022] Open
Abstract
Chromoselective photocatalysis offers an intriguing opportunity to enable a specific reaction pathway out of a potentially possible multiplicity for a given substrate by using a sensitizer that converts the energy of incident photon into the redox potential of the corresponding magnitude. Several sensitizers possessing different discrete redox potentials (high/low) upon excitation with photons of specific wavelength (short/long) have been reported. Herein, we report design of molecular structures of two-dimensional amorphous covalent triazine-based frameworks (CTFs) possessing intraband states close to the valence band with strong red edge effect (REE). REE enables generation of a continuum of excited sites characterized by their own redox potentials, with the magnitude proportional to the wavelength of incident photons. Separation of charge carriers in such materials depends strongly on the wavelength of incident light and is the primary parameter that defines efficacy of the materials in photocatalytic bromination of electron rich aromatic compounds. In dual Ni-photocatalysis, excitation of electrons from the intraband states to the conduction band of the CTF with 625 nm photons enables selective formation of C‒N cross-coupling products from arylhalides and pyrrolidine, while an undesirable dehalogenation process is completely suppressed.
Collapse
Affiliation(s)
- Yajun Zou
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Sara Abednatanzi
- Center for Ordered Materials, Organometallics and Catalysis, Ghent University, 9000, Gent, Belgium
| | | | - Stefano Mazzanti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Christoph M Schüßlbauer
- Department of Chemistry and Pharmacy Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Daniel Cruz
- Department of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, 14195, Germany
- Department of Heterogeneous Reactions, Max Planck Institute for Chemical Energy Conversion, Mülheiman der Ruhr, 45470, Germany
| | - Pascal Van Der Voort
- Center for Ordered Materials, Organometallics and Catalysis, Ghent University, 9000, Gent, Belgium
| | - Jian-Wen Shi
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Aleksandr Savateev
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany.
| |
Collapse
|
16
|
Lan ZA, Wu M, Fang Z, Zhang Y, Chen X, Zhang G, Wang X. Ionothermal Synthesis of Covalent Triazine Frameworks in NaCl‐KCl‐ZnCl2 Eutectic Salt for Hydrogen Evolution Reaction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhi-An Lan
- Fuzhou University college of chemistry CHINA
| | - Meng Wu
- Fuzhou University college of chemistry CHINA
| | | | | | - Xiong Chen
- Fuzhou University college of chemistry CHINA
| | | | - Xinchen Wang
- Fuzhou University Chemistry 523 Gongye Rd, Gulou 350000 Fuzhou CHINA
| |
Collapse
|
17
|
Jin E, Fu S, Hanayama H, Addicoat MA, Wei W, Chen Q, Graf R, Landfester K, Bonn M, Zhang KAI, Wang HI, Müllen K, Narita A. A Nanographene‐Based Two‐Dimensional Covalent Organic Framework as a Stable and Efficient Photocatalyst. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Enquan Jin
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Shuai Fu
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Hiroki Hanayama
- Organic and Carbon Nanomaterials Unit Okinawa Institute of Science and Technology Graduate University Kunigami-gun, Okinawa 904-0495 Japan
| | - Matthew A. Addicoat
- School of Science and Technology Nottingham Trent University Clifton Lane, Nottingham NG11 8NS UK
| | - Wenxin Wei
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Qiang Chen
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Robert Graf
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | | | - Mischa Bonn
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Kai A. I. Zhang
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Department of Materials Science Fudan University Shanghai 200433 P.R. China
| | - Hai I. Wang
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Klaus Müllen
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Department of Chemistry Johannes Gutenberg University Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Akimitsu Narita
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Organic and Carbon Nanomaterials Unit Okinawa Institute of Science and Technology Graduate University Kunigami-gun, Okinawa 904-0495 Japan
| |
Collapse
|
18
|
Jin E, Fu S, Hanayama H, Addicoat MA, Wei W, Chen Q, Graf R, Landfester K, Bonn M, Zhang KAI, Wang HI, Müllen K, Narita A. A Nanographene-Based Two-Dimensional Covalent Organic Framework as a Stable and Efficient Photocatalyst. Angew Chem Int Ed Engl 2022; 61:e202114059. [PMID: 34870362 PMCID: PMC9299764 DOI: 10.1002/anie.202114059] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Indexed: 01/14/2023]
Abstract
Synthesis of covalent organic frameworks (COFs) with desirable organic units furnishes advanced materials with unique functionalities. As an emerging class of two-dimensional (2D) COFs, sp2 -carbon-conjugated COFs provide a facile platform to build highly stable and crystalline porous polymers. Herein, a 2D olefin-linked COF was prepared by employing nanographene, namely, dibenzo[hi,st]ovalene (DBOV), as a building block. The DBOV-COF exhibits unique ABC-stacked lattices, enhanced stability, and charge-carrier mobility of ≈0.6 cm2 V-1 s-1 inferred from ultrafast terahertz photoconductivity measurements. The ABC-stacking structure was revealed by the high-resolution transmission electron microscopy and powder X-ray diffraction. DBOV-COF demonstrated remarkable photocatalytic activity in hydroxylation, which was attributed to the exposure of narrow-energy-gap DBOV cores in the COF pores, in conjunction with efficient charge transport following light absorption.
Collapse
Affiliation(s)
- Enquan Jin
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Shuai Fu
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Hiroki Hanayama
- Organic and Carbon Nanomaterials UnitOkinawa Institute of Science and Technology Graduate UniversityKunigami-gun, Okinawa904-0495Japan
| | - Matthew A. Addicoat
- School of Science and TechnologyNottingham Trent UniversityClifton Lane, NottinghamNG11 8NSUK
| | - Wenxin Wei
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Qiang Chen
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Robert Graf
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | | | - Mischa Bonn
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Kai A. I. Zhang
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Department of Materials ScienceFudan UniversityShanghai200433P.R. China
| | - Hai I. Wang
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Klaus Müllen
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Akimitsu Narita
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Organic and Carbon Nanomaterials UnitOkinawa Institute of Science and Technology Graduate UniversityKunigami-gun, Okinawa904-0495Japan
| |
Collapse
|
19
|
Liu G, Pan G, Dang Q, Li R, Li L, Yang C, Yu Y. Hollow Covalent Organic Framework Cages with Zn Ion‐Implantation Promoting Photocatalytic H2 Evolution. ChemCatChem 2022. [DOI: 10.1002/cctc.202101800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Guoyu Liu
- Fuzhou University College of Materials Science and Engineering CHINA
| | - Guodong Pan
- Fuzhou University College of Materials Science and Engineering CHINA
| | - Qiang Dang
- Fuzhou University College of Materials Science and Engineering CHINA
| | - Rui Li
- Fuzhou University College of Materials Science and Engineering CHINA
| | - Liuyi Li
- Fuzhou University College of Materials Science and Engineering 2 Xue Yuan Road, University Town, Fuzhou Fuzhou CHINA
| | - Chengkai Yang
- Fuzhou University College of Materials Science and Engineering CHINA
| | - Yan Yu
- Fuzhou University College of Materials Science and Engineering CHINA
| |
Collapse
|
20
|
Lan ZA, Wu M, Fang Z, Chi X, Chen X, Zhang Y, Wang X. A Fully Coplanar Donor-Acceptor Polymeric Semiconductor with Promoted Charge Separation Kinetics for Photochemistry. Angew Chem Int Ed Engl 2021; 60:16355-16359. [PMID: 33945196 DOI: 10.1002/anie.202103992] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/30/2021] [Indexed: 11/08/2022]
Abstract
Charge generation and separation are regarded as the major constraints limiting the photocatalytic activity of polymeric photocatalysts. Herein, two new linear polyarylether-based polymers (PAE-CPs) with distinct linking patterns between their donor and acceptor motifs were tailor-made to investigate the influence of different linking patterns on the charge generation and separation process. Theoretical and experimental results revealed that compared to the traditional single-stranded linker, the double-stranded linking pattern strengthens donor-acceptor interactions in PAE-CPs and generates a coplanar structure, facilitating charge generation and separation, and enabling red-shifted light absorption. With these prominent advantages, the PAE-CP interlinked with a double-stranded linker exhibits markedly enhanced photocatalytic activity compared to that of its single-strand-linked analogue. Such findings can facilitate the rational design and modification of organic semiconductors for charge-induced reactions.
Collapse
Affiliation(s)
- Zhi-An Lan
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China.,College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Meng Wu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Zhongpu Fang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xu Chi
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xiong Chen
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yongfan Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|
21
|
Lan Z, Wu M, Fang Z, Chi X, Chen X, Zhang Y, Wang X. A Fully Coplanar Donor–Acceptor Polymeric Semiconductor with Promoted Charge Separation Kinetics for Photochemistry. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zhi‐An Lan
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 P. R. China
- College of Chemical Engineering Fuzhou University Fuzhou 350116 P. R. China
| | - Meng Wu
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 P. R. China
| | - Zhongpu Fang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 P. R. China
| | - Xu Chi
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 P. R. China
| | - Xiong Chen
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 P. R. China
| | - Yongfan Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 P. R. China
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 P. R. China
| |
Collapse
|
22
|
Meng F, Bi S, Sun Z, Jiang B, Wu D, Chen JS, Zhang F. Synthesis of Ionic Vinylene-Linked Covalent Organic Frameworks through Quaternization-Activated Knoevenagel Condensation. Angew Chem Int Ed Engl 2021; 60:13614-13620. [PMID: 33844881 DOI: 10.1002/anie.202104375] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Indexed: 12/25/2022]
Abstract
We developed a simple approach to synthesizing ionic vinylene-linked two-dimensional covalent organic frameworks (COFs) through a quaternization-promoted Knoevenagel condensation at three aromatic methyl carbon atoms of N-ethyl-2,4,6-trimethylpyridinium halide with multitopic aromatic aldehyde derivatives. The resultant COFs exhibited a honeycomb-like structure with high crystallinity and surface areas as large as 1343 m2 g-1 . The regular shape-persistent nanochannels and the positively charged polymeric frameworks allowed the COFs to be uniformly composited with linear polyethylene oxide and lithium salt, displaying ionic conductivity as high as 2.72×10-3 S cm-1 .
Collapse
Affiliation(s)
- Fancheng Meng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuai Bi
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zuobang Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Biao Jiang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dongqing Wu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jie-Sheng Chen
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fan Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
23
|
Meng F, Bi S, Sun Z, Jiang B, Wu D, Chen J, Zhang F. Synthesis of Ionic Vinylene‐Linked Covalent Organic Frameworks through Quaternization‐Activated Knoevenagel Condensation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fancheng Meng
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites Shanghai Electrochemical Energy Devices Research Center Shanghai Jiao Tong University Shanghai 200240 China
| | - Shuai Bi
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites Shanghai Electrochemical Energy Devices Research Center Shanghai Jiao Tong University Shanghai 200240 China
| | - Zuobang Sun
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites Shanghai Electrochemical Energy Devices Research Center Shanghai Jiao Tong University Shanghai 200240 China
| | - Biao Jiang
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites Shanghai Electrochemical Energy Devices Research Center Shanghai Jiao Tong University Shanghai 200240 China
| | - Dongqing Wu
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites Shanghai Electrochemical Energy Devices Research Center Shanghai Jiao Tong University Shanghai 200240 China
| | - Jie‐Sheng Chen
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites Shanghai Electrochemical Energy Devices Research Center Shanghai Jiao Tong University Shanghai 200240 China
| | - Fan Zhang
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites Shanghai Electrochemical Energy Devices Research Center Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
24
|
Hao Q, Li ZJ, Bai B, Zhang X, Zhong YW, Wan LJ, Wang D. A Covalent Organic Framework Film for Three-State Near-Infrared Electrochromism and a Molecular Logic Gate. Angew Chem Int Ed Engl 2021; 60:12498-12503. [PMID: 33756014 DOI: 10.1002/anie.202100870] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/02/2021] [Indexed: 11/10/2022]
Abstract
A Kagome structure covalent organic framework (COF) film with three-state NIR electrochromic properties was designed and synthesized. The COFTPDA-PDA film is composed of hexagonal nanosheets with high crystallinity and has three reversible color states at different applied potentials. It has high absorption spectra changes in the NIR region, ascribed to the strong intervalence charge transfer (IVCT) interaction of the Class III mixed-valence systems of the conjugated triphenylamine species. The film showed sub-second response time (1.3 s for coloring and 0.7 s for bleaching at 1050 nm) and long retention time in the NIR region. COFTPDA-PDA film shows superior NIR electrochromic properties in term of response time and stability, attributed to the highly ordered porous structure and the π-π stacking structure of the COFTPDA-PDA architecture. The COFTPDA-PDA film was applied in mimicking a flip-flop logic gate with optical memory function.
Collapse
Affiliation(s)
- Qing Hao
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhi-Juan Li
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bin Bai
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xing Zhang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yu-Wu Zhong
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Li-Jun Wan
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Dong Wang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
25
|
Hao Q, Li Z, Bai B, Zhang X, Zhong Y, Wan L, Wang D. A Covalent Organic Framework Film for Three‐State Near‐Infrared Electrochromism and a Molecular Logic Gate. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Qing Hao
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of the Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zhi‐Juan Li
- Key Laboratory of Photochemistry Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of the Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Bin Bai
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of the Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xing Zhang
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yu‐Wu Zhong
- Key Laboratory of Photochemistry Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of the Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Li‐Jun Wan
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of the Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Dong Wang
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of the Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
26
|
Han S, Huang T, Pan Y, Zhao J, Lin H, Lin H, Ding Z, Xi H, Long J. Tunable linear donor–π–acceptor conjugated polymers with a vinylene linkage for visible-light driven hydrogen evolution. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00535a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Extending the in-plane conjugation or/and increasing the electron push–pull interaction of linear D–π–A polymers with a vinylene linkage could broaden the visible-light absorption band, promote the charge separation and transfer and the photocatalytic hydrogen production.
Collapse
Affiliation(s)
- Shitong Han
- State Key Laboratory of NBC Protection for Civilian
- Beijing
- 102205 P. R. China
| | - Tao Huang
- State Key Lab of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou
- 350116 P. R. China
| | - Yi Pan
- State Key Lab of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou
- 350116 P. R. China
| | - Jiwu Zhao
- State Key Lab of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou
- 350116 P. R. China
| | - Huan Lin
- State Key Lab of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou
- 350116 P. R. China
| | - Huaxiang Lin
- State Key Lab of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou
- 350116 P. R. China
| | - Zhengxin Ding
- State Key Lab of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou
- 350116 P. R. China
| | - Hailing Xi
- State Key Laboratory of NBC Protection for Civilian
- Beijing
- 102205 P. R. China
| | - Jinlin Long
- State Key Lab of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou
- 350116 P. R. China
| |
Collapse
|