Kuno A, Hirata G, Tanaka H, Kobayashi Y, Yasuda N, Maeda H. Dipyrrolyldiketone Pt
II Complexes: Ion-Pairing π-Electronic Systems with Various Anion-Binding Modes.
Chemistry 2021;
27:10068-10076. [PMID:
34002907 DOI:
10.1002/chem.202100855]
[Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Indexed: 11/10/2022]
Abstract
A variety of π-electronic ion-pairing assemblies can be constructed by combining anion complexes of π-electronic systems and countercations. In this study, a series of anion-responsive π-electronic molecules, dipyrrolyldiketone PtII complexes containing a phenylpyridine ligand, were synthesized. The resulting PtII complexes exhibited phosphorescence emission, with higher emission quantum yields (0.30-0.42) and microsecond-order lifetimes, and solution-state anion binding, as revealed by our spectroscopic analyses. These PtII complexes displayed solid-state ion-pairing assemblies, exhibiting various anion-binding modes, which derived from pyrrole-inverted and pyrrole-non-inverted conformations, and packing structures, with the contribution of charge-by-charge assemblies, which were dependent on the substituents in the PtII complexes and the geometries and electronic states of their countercations.
Collapse