1
|
Wang H, Yuan B, Zhu X, Shan X, Chen S, Ding W, Cao Y, Dong K, Zhang X, Guo R, Yao Y, Wang B, Tang J, Liu J. Multi-stimulus perception and visualization by an intelligent liquid metal-elastomer architecture. SCIENCE ADVANCES 2024; 10:eadp5215. [PMID: 38787948 PMCID: PMC11122678 DOI: 10.1126/sciadv.adp5215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024]
Abstract
Multi-stimulus responsive soft materials with integrated functionalities are elementary blocks for building soft intelligent systems, but their rational design remains challenging. Here, we demonstrate an intelligent soft architecture sensitized by magnetized liquid metal droplets that are dispersed in a highly stretchable elastomer network. The supercooled liquid metal droplets serve as microscopic latent heat reservoirs, and their controllable solidification releases localized thermal energy/information flows for enabling programmable visualization and display. This allows the perception of a variety of information-encoded contact (mechanical pressing, stretching, and torsion) and noncontact (magnetic field) stimuli as well as the visualization of dynamic phase transition and stress evolution processes, via thermal and/or thermochromic imaging. The liquid metal-elastomer architecture offers a generic platform for designing soft intelligent sensing, display, and information encryption systems.
Collapse
Affiliation(s)
- Hongzhang Wang
- Institute of Materials Research, Center of Double Helix, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Bo Yuan
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, P. R. China
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, P. R. China
| | - Xiyu Zhu
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Xiaohui Shan
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Sen Chen
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Wenbo Ding
- Tsinghua-Berkeley Shenzhen Institute, Institute of Data and Information, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, P. R. China
| | - Yingjie Cao
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Kaichen Dong
- Institute of Materials Research, Center of Double Helix, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
- Tsinghua-Berkeley Shenzhen Institute, Institute of Data and Information, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, P. R. China
| | - Xudong Zhang
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Rui Guo
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Yuchen Yao
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Bo Wang
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, P. R. China
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, P. R. China
| | - Jianbo Tang
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, NSW 2052, Australia
| | - Jing Liu
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, P. R. China
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
2
|
Castilla-Amorós L, Chien TCC, Pankhurst JR, Buonsanti R. Modulating the Reactivity of Liquid Ga Nanoparticle Inks by Modifying Their Surface Chemistry. J Am Chem Soc 2022; 144:1993-2001. [DOI: 10.1021/jacs.1c12880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Laia Castilla-Amorós
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Tzu-Chin Chang Chien
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - James R. Pankhurst
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Raffaella Buonsanti
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| |
Collapse
|