1
|
Liu S, Zhang Q, He H, Yi M, Tan W, Guo J, Xu B. Intranuclear Nanoribbons for Selective Killing of Osteosarcoma Cells. Angew Chem Int Ed Engl 2022; 61:e202210568. [PMID: 36102872 PMCID: PMC9869109 DOI: 10.1002/anie.202210568] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 01/26/2023]
Abstract
Herein, we show intranuclear nanoribbons formed upon dephosphorylation of leucine-rich L- or D-phosphopeptide catalyzed by alkaline phosphatase (ALP) to selectively kill osteosarcoma cells. Being dephosphorylated by ALP, the peptides are first transformed into micelles and then converted into nanoribbons. The peptides/assemblies first aggregate on cell membranes, then enter cells via endocytosis, and finally accumulate in nuclei (mainly in nucleoli). Proteomics analysis suggests that the assemblies interact with histone proteins. The peptides kill osteosarcoma cells rapidly and are nontoxic to normal cells. Moreover, the repeated stimulation of the osteosarcoma cells by the peptides sensitizes the cancer cells rather than inducing resistance. This work not only illustrates a novel mechanism for nucleus targeting, but may also pave a new way for selectively killing osteosarcoma cells and minimizing drug resistance.
Collapse
Affiliation(s)
- Shuang Liu
- School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei, 430070, China
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Qiuxin Zhang
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Hongjian He
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Meihui Yi
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Weiyi Tan
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Jiaqi Guo
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| |
Collapse
|
2
|
Wang MD, Lv GT, An HW, Zhang NY, Wang H. In Situ Self-Assembly of Bispecific Peptide for Cancer Immunotherapy. Angew Chem Int Ed Engl 2022; 61:e202113649. [PMID: 34994999 DOI: 10.1002/anie.202113649] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Indexed: 12/12/2022]
Abstract
Precise and effective manipulation of protein functions still faces tremendous challenges. Herein we report a programmable peptide molecule, consisted of targeting and self-assembly modules, that enables specific and highly efficient assembly governed by targeting receptor proteins. Upon binding to the cell membrane receptor, peptide conformation is somewhat stabilized along with decreased self-assembly activation energy, promoting peptide-protein complex oligomerization. We first design a GNNQQNY-RGD peptide (G7-RGD) to recognize integrin αV β3 receptor for proof-of-concept study. In the presence of αV β3 protein, the critical assembly concentration of free G7-RGD decreases from 525 to 33 μM and the resultant G7-RGD cluster drives integrin receptor oligomerization. Finally, a bispecific assembling peptide antiCD3-G7-RGD is rationally designed for cancer immunotherapy, which validates CD3 oligomerization and concomitant T cell activation, leading to T cell-mediated cancer cell cytolysis.
Collapse
Affiliation(s)
- Man-Di Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19 (A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Gan-Tian Lv
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19 (A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Hong-Wei An
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19 (A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Ni-Yuan Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19 (A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19 (A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| |
Collapse
|
3
|
Wang MD, Lv GT, An HW, Zhang NY, Wang H. In Situ Self‐Assembly of Bispecific Peptide for Cancer Immunotherapy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Man-Di Wang
- National Center for Nanoscience and Nanotechnology: National Center for Nanoscience and Technology Key laboratory for biomedical effects of nanomaterials and nanosafety CHINA
| | - Gan-Tian Lv
- National Center for Nanoscience and Nanotechnology: National Center for Nanoscience and Technology Key laboratory for biomedical effects of nanomaterials and nanosafety CHINA
| | - Hong-Wei An
- National Center for Nanoscience and Nanotechnology: National Center for Nanoscience and Technology Key laboratory for biomedical effects of nanomaterials and nanosafety CHINA
| | - Ni-Yuan Zhang
- National Center for Nanoscience and Nanotechnology: National Center for Nanoscience and Technology Key laboratory for biomedical effects of nanomaterials and nanosafety CHINA
| | - Hao Wang
- National Center for Nanoscience and Technology No. 11 Beiyitiao, Zhongguancun 100190 Beijing CHINA
| |
Collapse
|
4
|
Guo RC, Zhang XH, Fan PS, Song BL, Li ZX, Duan ZY, Qiao ZY, Wang H. In Vivo Self-Assembly Induced Cell Membrane Phase Separation for Improved Peptide Drug Internalization. Angew Chem Int Ed Engl 2021; 60:25128-25134. [PMID: 34549872 DOI: 10.1002/anie.202111839] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Indexed: 12/23/2022]
Abstract
Therapeutic peptides have been widely concerned, but their efficacy is limited by the inability to penetrate cell membranes, which is a key bottleneck in peptide drugs delivery. Herein, an in vivo self-assembly strategy is developed to induce phase separation of cell membrane that improves the peptide drugs internalization. A phosphopeptide KYp is synthesized, containing an anticancer peptide [KLAKLAK]2 (K) and a responsive moiety phosphorylated Y (Yp). After interacting with alkaline phosphatase (ALP), KYp can be dephosphorylated and self-assembles in situ, which induces the aggregation of ALP and the protein-lipid phase separation on cell membrane. Consequently, KYp internalization is 2-fold enhanced compared to non-responsive peptide, and IC50 value of KYp is approximately 5 times lower than that of free peptide. Therefore, the in vivo self-assembly induced phase separation on cell membrane promises a new strategy to improve the drug delivery efficacy in cancer therapy.
Collapse
Affiliation(s)
- Ruo-Chen Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China.,School of Chemical Engineering and Technology, Hebei University of Technology, No. 8 Guangrongdao, Tianjin, 300130, China
| | - Xue-Hao Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Peng-Sheng Fan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Ben-Li Song
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Zhi-Xiang Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Zhong-Yu Duan
- School of Chemical Engineering and Technology, Hebei University of Technology, No. 8 Guangrongdao, Tianjin, 300130, China
| | - Zeng-Ying Qiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| |
Collapse
|
5
|
Guo R, Zhang X, Fan P, Song B, Li Z, Duan Z, Qiao Z, Wang H. In Vivo Self‐Assembly Induced Cell Membrane Phase Separation for Improved Peptide Drug Internalization. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ruo‐Chen Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nano-science National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun Beijing 100190 China
- School of Chemical Engineering and Technology Hebei University of Technology No. 8 Guangrongdao Tianjin 300130 China
| | - Xue‐Hao Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nano-science National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun Beijing 100190 China
| | - Peng‐Sheng Fan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nano-science National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun Beijing 100190 China
| | - Ben‐Li Song
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nano-science National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun Beijing 100190 China
| | - Zhi‐Xiang Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nano-science National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun Beijing 100190 China
| | - Zhong‐Yu Duan
- School of Chemical Engineering and Technology Hebei University of Technology No. 8 Guangrongdao Tianjin 300130 China
| | - Zeng‐Ying Qiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nano-science National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun Beijing 100190 China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nano-science National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun Beijing 100190 China
| |
Collapse
|