1
|
Dolati H, Denker L, Martínez JP, Trzaskowski B, Frank R. Iminoboranes With Parent B=NH Entity: Imino Group Metathesis, Nucleophilic Reactivity and N-N Coupling. Chemistry 2023; 29:e202302494. [PMID: 37584302 DOI: 10.1002/chem.202302494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 08/17/2023]
Abstract
While R2 C=N-R double bonds in organic imines are well established, the related iminoboranes R-B=N-R are either prone to oligomerization or can only be stabilized at sufficient steric congestion. In particular, the examples of unsubstituted parent B=N-H entity are rare. We demonstrate that the amino imidazoline-2-imine ligand system (HAmIm) not only gives rise to the isolation of a parent (AmIm)B=N-H iminoborane, but also to species of type (AmIm)B=N-SiMe3 with concomitant stabilization by lithium bromide. The double bond character in these systems is unambiguously corroborated by DFT calculations. The steric accessibility of the (AmIm)B=NH unit allows facile reactivity including metathesis reactions with C=O and C=S bonds, nucleophilic addition toward organic and organometallic carbonyl compounds, but also oxidative N-N coupling within a dimeric unit. Thus, the chemical behavior of the (AmIm)B=N-H and (AmIm)B=N-SiMe3 is distinctly different from that of organic imines.
Collapse
Affiliation(s)
- Hadi Dolati
- Institute of Inorganic and Analytical Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Lars Denker
- Institute of Inorganic and Analytical Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Juan Pablo Martínez
- Centre of New Technologies, University of Warsaw, Banacha 2 C, 02-097, Warszawa, Poland
| | - Bartosz Trzaskowski
- Centre of New Technologies, University of Warsaw, Banacha 2 C, 02-097, Warszawa, Poland
| | - René Frank
- Institute of Inorganic and Analytical Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| |
Collapse
|
2
|
Nakano R, Yamanashi R, Yamashita M. Base-Stabilized Neutral Oxoborane and Thioxoborane Supported by a Bis(oxazolinyl)(phenyl)methanide Ligand. Chemistry 2023; 29:e202203280. [PMID: 36507866 DOI: 10.1002/chem.202203280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Base-stabilized neutral oxoborane and thioxoborane supported by a bis(oxazolinyl)(phenyl)methanide ligand have been synthesized and structurally characterized. While previous synthetic attempts of oxoborane ligated by β-diketiminate (NacNac) did not allow for its isolation in acid-free form, oxoborane supported by a bis(oxazolinyl)(phenyl)methanide ligand is isolable, due to the absence of imine ɑ-protons and steric protection of enamine carbon. Crystallographic analysis revealed the presence of a B-O double bond close to the shortest end of the reported lengths. Its reactivity has also been examined, and it was majorly governed by the nucleophilicity and basicity of the oxygen atom. The chemical inertness and synthetic convenience of the bis(oxazolinyl)(phenyl)methanide scaffold presented in this work suggest its utility as an innocent alternative to the NacNac scaffold.
Collapse
Affiliation(s)
- Ryo Nakano
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Tokai National Higher Education and Research System, Furo-cho, Chikusa-ku, 464-8603, Nagoya, Japan
| | - Ryotaro Yamanashi
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Tokai National Higher Education and Research System, Furo-cho, Chikusa-ku, 464-8603, Nagoya, Japan
| | - Makoto Yamashita
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Tokai National Higher Education and Research System, Furo-cho, Chikusa-ku, 464-8603, Nagoya, Japan.,Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Tokai National Higher Education and Research System, Furo-cho, Chikusa-ku, 464-8602, Nagoya, Japan
| |
Collapse
|
3
|
Güven Z, Denker L, Wullschläger D, Pablo Martínez J, Trzaskowski B, Frank R. Reductive Al-B σ-Bond Formation in Alumaboranes: Facile Scission of Polar Multiple Bonds. Angew Chem Int Ed Engl 2022; 61:e202209502. [PMID: 35947518 PMCID: PMC9826004 DOI: 10.1002/anie.202209502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Indexed: 01/11/2023]
Abstract
We present facile access to an alumaborane species with electron precise Al-B σ-bond. The reductive rearrangement of 1-(AlI2 ), 8-(BMes2 ) naphthalene (Mes=2,4,6-Me3 C6 H2 ) affords the alumaborane species cyclo-(1,8-C10 H6 )-[1-Al(Mes)(OEt2 )-8-B(Mes)] with a covalent Al-B σ-bond. The Al-B σ-bond performs the reductive scission of multiple bonds: S=C(NiPrCMe)2 affords the naphthalene bridged motif B-S-Al(NHC), NHC=N-heterocyclic carbene, while O=CPh2 is deoxygenated to afford an B-O-Al bridged species with incorporation of the remaining ≡CPh2 fragment into the naphthalene scaffold. The reaction with isonitrile Xyl-N≡C (Xyl=2,6-Me2 C6 H4 ) proceeds via a proposed (amino boryl) carbene species; which adds a second equivalent of isonitrile to ultimately form the Al-N-B bridged species cyclo-(1,8-C10 H6 )-[1-Al(Mes)-N(Xyl)-8-B{C(Mes)=C-N-Xyl}] with complete scission of the C≡N triple bond. The latter reaction is supported with isolated intermediates and by DFT calculations.
Collapse
Affiliation(s)
- Zeynep Güven
- Department of Inorganic and Analytical ChemistryTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| | - Lars Denker
- Department of Inorganic and Analytical ChemistryTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| | - Daniela Wullschläger
- Department of Inorganic and Analytical ChemistryTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| | | | | | - René Frank
- Department of Inorganic and Analytical ChemistryTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| |
Collapse
|
4
|
Güven Z, Denker L, Wullschläger D, Martínez JP, Trzaskowski B, Frank R. Reductive Al−B σ‐Bond Formation in Alumaboranes: Facile Scission of Polar Multiple Bonds. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zeynep Güven
- Technische Universität Braunschweig Fakultät für Lebenswissenschaften: Technische Universitat Braunschweig Fakultat fur Lebenswissenschaften Anorganische und Analytische Chemie GERMANY
| | - Lars Denker
- Technische Universität Braunschweig Fakultät für Lebenswissenschaften: Technische Universitat Braunschweig Fakultat fur Lebenswissenschaften Anorganische und Analytische Chemie GERMANY
| | - Daniela Wullschläger
- Technische Universität Braunschweig Fakultät für Lebenswissenschaften: Technische Universitat Braunschweig Fakultat fur Lebenswissenschaften Anorganische und Analytische Chemie GERMANY
| | - Juan Pablo Martínez
- University of Warsaw: Uniwersytet Warszawski Center of New Technologies POLAND
| | - Bartosz Trzaskowski
- University of Warsaw: Uniwersytet Warszawski Center of New Technologies POLAND
| | - René Frank
- Technische Universität Braunschweig Fakultät für Lebenswissenschaften: Technische Universitat Braunschweig Fakultat fur Lebenswissenschaften Inorganic and Analytical Chemistry Hagenring 30 38106 Braunschweig GERMANY
| |
Collapse
|
5
|
Güven Z, Denker L, Dolati H, Wullschläger D, Trzaskowski B, Frank R. Reactions of a Four‐Membered Borete with Carbon, Silicon, and Gallium Donor Ligands: Fused and Spiro‐Type Boracycles. Chemistry 2022; 28:e202200673. [PMID: 35362629 PMCID: PMC9322404 DOI: 10.1002/chem.202200673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Indexed: 12/27/2022]
Abstract
Donor‐acceptor cyclopropanes or cyclobutanes are dipolar reagents, which are widely used in the synthesis of complex organic (hetero)cycles in ring expansion reactions. Applying this concept to boron containing heterocycles, the four‐membered borete cyclo‐iPr2N‐BC10H6 reacted with the carbon donor ligands 2,6‐xylylisonitrile and the carbene IMes :C(NMesCH)2 with ring expansion and ring fusion, respectively. In particular, the tetracyclic structure formed with IMes displays zwitterionic character and absorption in the visible region. In contrast to the carbene IMes, the heavier carbenoids :Si(NDippCH)2 and :Ga(AmIm) with a two‐coordinate donor atom afford spiro‐type bicyclic compounds, which display four‐coordinate geometry at silicon or gallium. (TD‐)DFT calculations provide deeper insight into the mechanism of formation and the absorption properties of these new compounds.
Collapse
Affiliation(s)
- Zeynep Güven
- Department of Inorganic and Analytical Chemistry Technische Universität Braunschweig Hagenring 30 38106 Braunschweig Germany
| | - Lars Denker
- Department of Inorganic and Analytical Chemistry Technische Universität Braunschweig Hagenring 30 38106 Braunschweig Germany
| | - Hadi Dolati
- Department of Inorganic and Analytical Chemistry Technische Universität Braunschweig Hagenring 30 38106 Braunschweig Germany
| | - Daniela Wullschläger
- Department of Inorganic and Analytical Chemistry Technische Universität Braunschweig Hagenring 30 38106 Braunschweig Germany
| | - Bartosz Trzaskowski
- Centre of New Technologies University of Warsaw Banacha 2 C 02-097 Warszawa Poland
| | - René Frank
- Department of Inorganic and Analytical Chemistry Technische Universität Braunschweig Hagenring 30 38106 Braunschweig Germany
| |
Collapse
|
6
|
Martínez JP, Trzaskowski B. Structural and Electronic Properties of Boranes Containing Boron‐Chalcogen Multiple Bonds and Stabilized by Amido Imidazoline‐2‐imine Ligands. Chemistry 2022; 28:e202103997. [DOI: 10.1002/chem.202103997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Indexed: 11/09/2022]
|
7
|
Wullschläger D, Denker L, Frank R. Metal Halide Exchange in Benzylborane NHC‐Adducts: The Effect of Backbone Alkylation in the
N
‐Heterocyclic Carbene. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Daniela Wullschläger
- Department of Inorganic and Analytical Chemistry Technische Universität Braunschweig Hagenring 30 38106 Braunschweig Germany
| | - Lars Denker
- Department of Inorganic and Analytical Chemistry Technische Universität Braunschweig Hagenring 30 38106 Braunschweig Germany
| | - René Frank
- Department of Inorganic and Analytical Chemistry Technische Universität Braunschweig Hagenring 30 38106 Braunschweig Germany
| |
Collapse
|
8
|
Abstract
Structurally authenticated free B-alkyl boroles are presented and electronic implications of alkyl substitution were assessed. Deprotonation of a boron-bound exocyclic methyl group in a B-methyl borole yields the first 5-boratafulvene anion-an isomer to boratabenzene. Boratafulvene was structurally characterized and its electronic structure probed by DFT calculations. The pKa value of the exocyclic B-CH3 in a set of boroles was computationally approximated and confirmed a pronounced acidic character caused by the boron atom embedded in an anti-aromatic moiety. The non-aromatic boratafulvene reacts as a C-centered nucleophile with the mild electrophile Me3 SnCl to give a stannylmethyl borole, regenerating the anti-aromaticity. As nucleophilic synthons for boroles, boratafulvenes thus open an entirely new avenue for synthetic strategies toward this highly reactive class of heterocycles. Boratafulvene reacts as a methylene transfer reagent in a bora-Wittig-type reaction generating a borole oxide.
Collapse
Affiliation(s)
- Tobias Heitkemper
- Institut für Anorganische ChemieGeorg-August-Universität GöttingenTammannstrasse 437077GöttingenGermany
| | - Leonard Naß
- Institut für Anorganische ChemieGeorg-August-Universität GöttingenTammannstrasse 437077GöttingenGermany
| | - Christian P. Sindlinger
- Institut für Anorganische ChemieGeorg-August-Universität GöttingenTammannstrasse 437077GöttingenGermany
| |
Collapse
|
9
|
Heitkemper T, Naß L, Sindlinger CP. Ein Boratafulven. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tobias Heitkemper
- Institut für Anorganische Chemie Georg-August-Universität Göttingen Tammannstraße 4 37077 Göttingen Deutschland
| | - Leonard Naß
- Institut für Anorganische Chemie Georg-August-Universität Göttingen Tammannstraße 4 37077 Göttingen Deutschland
| | - Christian P. Sindlinger
- Institut für Anorganische Chemie Georg-August-Universität Göttingen Tammannstraße 4 37077 Göttingen Deutschland
| |
Collapse
|
10
|
Wang H, Zhang J, Yang J, Xie Z. Synthesis, Structure, and Reactivity of Acid-Free Neutral Oxoborane. Angew Chem Int Ed Engl 2021; 60:19008-19012. [PMID: 34060203 DOI: 10.1002/anie.202106069] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Indexed: 11/09/2022]
Abstract
An efficient synthesis of an acid-free neutral oxoborane of the type carboranyl-B(carbene)=O has been developed via a serendipitous discovery from the reaction of 1,2-[BBr(carbene)]-o-carborane with AgOTf. This represents a new type of oxoborane. The stabilization of this oxoborane may be attributed to 1) kinetic stabilization provided by a bulky 3D carboranyl ligand and 2) thermodynamic stabilization offered by a carbene ligand. Crystallographic analyses support the presence of the shortest terminal B=O double bond ever reported thus far. Its reactivity has also been examined.
Collapse
Affiliation(s)
- Hanqiang Wang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Jie Zhang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Jingting Yang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Zuowei Xie
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
11
|
Wang H, Zhang J, Yang J, Xie Z. Synthesis, Structure, and Reactivity of Acid‐Free Neutral Oxoborane. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Hanqiang Wang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry The Chinese University of Hong Kong Shatin, New Territories Hong Kong China
| | - Jie Zhang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry The Chinese University of Hong Kong Shatin, New Territories Hong Kong China
| | - Jingting Yang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry The Chinese University of Hong Kong Shatin, New Territories Hong Kong China
| | - Zuowei Xie
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry The Chinese University of Hong Kong Shatin, New Territories Hong Kong China
| |
Collapse
|