1
|
Wang T, Fei J, Dong Z, Yu F, Li J. Nanoarchitectonics with a Membrane-Embedded Electron Shuttle Mimics the Bioenergy Anabolism of Mitochondria. Angew Chem Int Ed Engl 2024; 63:e202319116. [PMID: 38225920 DOI: 10.1002/anie.202319116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
Enhanced bioenergy anabolism through transmembrane redox reactions in artificial systems remains a great challenge. Here, we explore synthetic electron shuttle to activate transmembrane chemo-enzymatic cascade reactions in a mitochondria-like nanoarchitecture for augmenting bioenergy anabolism. In this nanoarchitecture, a dendritic mesoporous silica microparticle as inner compartment possesses higher load capacity of NADH as proton source and allows faster mass transfer. In addition, the outer compartment ATP synthase-reconstituted proteoliposomes. Like natural enzymes in the mitochondrion respiratory chain, a small synthetic electron shuttle embedded in the lipid bilayer facilely mediates transmembrane redox reactions to convert NADH into NAD+ and a proton. These facilitate an enhanced outward proton gradient to drive ATP synthase to rotate for catalytic ATP synthesis with improved performance in a sustainable manner. This work opens a new avenue to achieve enhanced bioenergy anabolism by utilizing a synthetic electron shuttle and tuning inner nanostructures, holding great promise in wide-range ATP-powered bioapplications.
Collapse
Affiliation(s)
- Tonghui Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jinbo Fei
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhenzhen Dong
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Fanchen Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
2
|
Fei J, Li J. Advance in ATP-involved Active Self-assembled Systems. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Li Z, Xu X, Yu F, Fei J, Li Q, Dong M, Li J. Oriented Nanoarchitectonics of Bacteriorhodopsin for Enhancing ATP Generation in a F o F 1 -ATPase-Based Assembly System. Angew Chem Int Ed Engl 2022; 61:e202116220. [PMID: 35129265 DOI: 10.1002/anie.202116220] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Indexed: 12/23/2022]
Abstract
Energy conversion plays an important role in the metabolism of photosynthetic organisms. Improving energy transformation by promoting a proton gradient has been a great challenge for a long time. In the present study, we realize a directional proton migration through the construction of oriented bacteriorhodopsin (BR) microcapsules coated by Fo F1 -ATPase molecular motors through layer-by-layer (LBL) assembly. The changes in the conformation of BR under illumination lead to proton transfer in a radial direction, which generates a higher proton gradient to drive the synthesis of adenosine triphosphate (ATP) by Fo F1 -ATPase. Furthermore, to promote the photosynthetic activity, optically matched quantum dots were introduced into the artificial coassembly system of BR and Fo F1 -ATPase. Such a design creates a new path for the use of light energy.
Collapse
Affiliation(s)
- Zibo Li
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Xia Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Fanchen Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jinbo Fei
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qiang Li
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, 8000, Denmark
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
4
|
Li Z, Xu X, Yu F, Fei J, Li Q, Dong M, Li J. Oriented Nanoarchitectonics of Bacteriorhodopsin for Enhancing ATP Generation in a F
o
F
1
‐ATPase‐Based Assembly System. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zibo Li
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education School of Chemistry and Chemical Engineering Shandong University Jinan 250100 China
| | - Xia Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences 100190 Beijing China
- University of Chinese Academy of Sciences 100049 Beijing China
| | - Fanchen Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences 100190 Beijing China
- University of Chinese Academy of Sciences 100049 Beijing China
| | - Jinbo Fei
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences 100190 Beijing China
- University of Chinese Academy of Sciences 100049 Beijing China
| | - Qiang Li
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education School of Chemistry and Chemical Engineering Shandong University Jinan 250100 China
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University Aarhus C 8000 Denmark
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences 100190 Beijing China
- University of Chinese Academy of Sciences 100049 Beijing China
| |
Collapse
|