1
|
Guo P, Chu X, Wu C, Qiao T, Guan W, Zhou C, Wang T, Tian C, He G, Chen G. Peptide Stapling by Crosslinking Two Amines with α-Ketoaldehydes through Diverse Modified Glyoxal-Lysine Dimer Linkers. Angew Chem Int Ed Engl 2024; 63:e202318893. [PMID: 38376389 DOI: 10.1002/anie.202318893] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 02/21/2024]
Abstract
α-Ketoaldehydes play versatile roles in the ubiquitous natural processes of protein glycation. However, leveraging the reactivity of α-ketoaldehydes for biomedical applications has been challenging. Previously, the reactivity of α-ketoaldehydes with guanidine has been harnessed to design probes for labeling Arg residues on proteins in an aqueous medium. Herein, a highly effective, broadly applicable, and operationally simple protocol for stapling native peptides by crosslinking two amino groups through diverse imidazolium linkers with various α-ketoaldehyde reagents is described. The use of hexafluoroisopropanol as a solvent facilitates rapid and clean reactions under mild conditions and enables unique selectivity for Lys over Arg. The naturally occurring GOLD/MOLD linkers have been expanded to encompass a wide range of modified glyoxal-lysine dimer (OLD) linkers. In a proof-of-concept trial, these modular stapling reactions enabled a convenient two-round strategy to streamline the structure-activity relationship (SAR) study of the wasp venom peptide anoplin, leading to enhanced biological activities.
Collapse
Affiliation(s)
- Pan Guo
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xin Chu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chengjin Wu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Tianjiao Qiao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Wenli Guan
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chuanzheng Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Tao Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Changlin Tian
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Gang He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
2
|
Chu X, Li B, Liu HY, Sun X, Yang X, He G, Zhou C, Xuan W, Liu SL, Chen G. Bioconjugation via Hetero-Selective Clamping of Two Different Amines with ortho-Phthalaldehyde. Angew Chem Int Ed Engl 2023; 62:e202212199. [PMID: 36398699 DOI: 10.1002/anie.202212199] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Indexed: 11/19/2022]
Abstract
Amino groups are common in both natural and synthetic compounds and offer a very attractive class of endogenous handles for bioconjugation. However, the ability to differentiate two types of amino groups and join them with high hetero-selectivity and efficiency in a complex setting remains elusive. Herein, we report a new method for bioconjugation via one-pot chemoselective clamping of two different amine nucleophiles using a simple ortho-phthalaldehyde (OPA) reagent. Various α-amino acids, aryl amines, and secondary amines can be crosslinked to the ϵ-amino side chain of lysine on peptides or proteins with high efficiency and hetero-selectivity. This method offers a simple and powerful means to crosslink small molecule drugs, imaging probes, peptides, proteins, carbohydrates, and even virus particles without any pre-functionalization.
Collapse
Affiliation(s)
- Xin Chu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Bo Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Hao-Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiaowei Sun
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiaochen Yang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Gang He
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chuanzheng Zhou
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Weimin Xuan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, China.,Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Gong Chen
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.,Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
3
|
Wu Y, Chau H, Thor W, Chan KHY, Ma X, Chan W, Long NJ, Wong K. Solid-Phase Peptide Macrocyclization and Multifunctionalization via Dipyrrin Construction. Angew Chem Int Ed Engl 2021; 60:20301-20307. [PMID: 34272794 PMCID: PMC8457249 DOI: 10.1002/anie.202108885] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Indexed: 11/11/2022]
Abstract
We introduce a new and highly efficient synthetic protocol towards multifunctional fluorescent cyclopeptides by solid-phase peptide macrocyclization via dipyrrin construction, with full scope of proteinogenic amino acids and different ring sizes. Various bicyclic peptides can be created by dipyrrin-based crosslinking and double dipyrrin-ring formation. The embedded dipyrrin can be either transformed to fluorescent BODIPY and then utilized as cancer-selective targeted protein imaging probe in vitro, or directly employed as a selective metal sensor in aqueous media. This work provides a valuable addition to the peptide macrocyclization toolbox, and a blueprint for the development of multifunctional dipyrrin linkers in cyclopeptides for a wide range of potential bioapplications.
Collapse
Affiliation(s)
- Yue Wu
- Department of ChemistryHong Kong Baptist UniversityKowloon TongKowloonHong Kong SARChina
| | - Ho‐Fai Chau
- Department of ChemistryHong Kong Baptist UniversityKowloon TongKowloonHong Kong SARChina
| | - Waygen Thor
- Department of ChemistryHong Kong Baptist UniversityKowloon TongKowloonHong Kong SARChina
| | - Kaitlin Hao Yi Chan
- Department of ChemistryHong Kong Baptist UniversityKowloon TongKowloonHong Kong SARChina
- Department of Applied Biology and Chemical TechnologyHong Kong Polytechnic UniversityHung HomHong Kong SARChina
| | - Xia Ma
- Department of ChemistryHong Kong Baptist UniversityKowloon TongKowloonHong Kong SARChina
| | - Wai‐Lun Chan
- Department of Applied Biology and Chemical TechnologyHong Kong Polytechnic UniversityHung HomHong Kong SARChina
| | - Nicholas J. Long
- Department of ChemistryImperial College London, Molecular Sciences Research HubLondonUK
| | - Ka‐Leung Wong
- Department of ChemistryHong Kong Baptist UniversityKowloon TongKowloonHong Kong SARChina
| |
Collapse
|
4
|
Wu Y, Chau H, Thor W, Chan KHY, Ma X, Chan W, Long NJ, Wong K. Solid‐Phase Peptide Macrocyclization and Multifunctionalization via Dipyrrin Construction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108885] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yue Wu
- Department of Chemistry Hong Kong Baptist University Kowloon Tong Kowloon Hong Kong SAR China
| | - Ho‐Fai Chau
- Department of Chemistry Hong Kong Baptist University Kowloon Tong Kowloon Hong Kong SAR China
| | - Waygen Thor
- Department of Chemistry Hong Kong Baptist University Kowloon Tong Kowloon Hong Kong SAR China
| | - Kaitlin Hao Yi Chan
- Department of Chemistry Hong Kong Baptist University Kowloon Tong Kowloon Hong Kong SAR China
- Department of Applied Biology and Chemical Technology Hong Kong Polytechnic University Hung Hom Hong Kong SAR China
| | - Xia Ma
- Department of Chemistry Hong Kong Baptist University Kowloon Tong Kowloon Hong Kong SAR China
| | - Wai‐Lun Chan
- Department of Applied Biology and Chemical Technology Hong Kong Polytechnic University Hung Hom Hong Kong SAR China
| | - Nicholas J. Long
- Department of Chemistry Imperial College London, Molecular Sciences Research Hub London UK
| | - Ka‐Leung Wong
- Department of Chemistry Hong Kong Baptist University Kowloon Tong Kowloon Hong Kong SAR China
| |
Collapse
|