1
|
Wei J, Liu M, Lin SJ, Cai Z. Donor-Acceptor MOF Enabling Efficient Electrochemiluminescence Based on TSCT-TADF. J Phys Chem Lett 2024; 15:11104-11111. [PMID: 39475377 DOI: 10.1021/acs.jpclett.4c01967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Electrochemiluminescence (ECL) is an extensively studied luminescence technique recognized for its efficacy in investigating surface energy states. Effective utilization of ECL to explore and probe the charge transfer mechanisms facilitated by novel luminescent materials is crucial. In this study, we demonstrate thermally activated delayed fluorescence (TADF) based on spatial charge transfer through the precisely controlled synthesis of luminescent materials, which is achieved by incorporating phenyl-carbazole derivatives as donor guests within acceptor-hosted metal-organic frameworks (D-A MOFs). These hybrid structures exhibit superior ECL intensities compared with their monomeric counterparts. Mechanistic investigation by DFT calculation reveals that the physically separated yet spatially closed D-A configuration induces efficient intermolecular through-spatial charge transfer (TSCT), leading to efficient ECL through tuning of the dihedral angle of the guest molecules to enhance π-π interactions. This study introduces a strategy for precise modulation of spatial charge transfer at the molecular level in the programmable synthesis of ECL luminophores.
Collapse
Affiliation(s)
- Jinliu Wei
- College of Chemistry, Chemical Engineering and Environment, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, China 363000
| | - Mengru Liu
- College of Chemistry, Chemical Engineering and Environment, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, China 363000
| | - Shu-Juan Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 China
| | - Zhixiong Cai
- College of Chemistry, Chemical Engineering and Environment, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, China 363000
| |
Collapse
|
2
|
Macionis S, Gudeika D, Volyniuk D, Mahmoudi M, Simokaitiene J, Andruleviciene V, Najafov M, Sadzeviciene R, Stoncius S, Grazulevicius JV. Effect of Substituents with the Different Electron-Donating Abilities on Optoelectronic Properties of Bipolar Thioxanthone Derivatives. ACS APPLIED ELECTRONIC MATERIALS 2023; 5:2227-2238. [PMID: 37124238 PMCID: PMC10134433 DOI: 10.1021/acsaelm.3c00092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/27/2023] [Indexed: 05/03/2023]
Abstract
The synthesis and optoelectronic properties of four simple-structure thioxanthone derivatives employing thioxanthone as an acceptor unit, coupled with moieties having very different electron-donating abilities such as phenoxazine, 3,6-di-tert-butylcarbazole, 3,7-di-tert-butylphenothiazine, or 2,7-di-tert-butyl-9,9-dimethylacridane, are reported. The compounds form molecular glasses with glass transition temperatures reaching 116 °C. Ionization potentials of the compounds estimated by photoelectron emission method range from 5.42 to 5.74 eV. Thioxanthone derivatives containing 3,6-tert-butylcarbazole or 2,7-di-tert-butyl-9,9-dimethylacridane moieties with weak electron-donating strengths were characterized by bipolar charge transport with relatively close hole and electron mobility values of 6.8 × 10-5/2.4 × 10-5 and 3.1 × 10-5/4.6 × 10-6 cm2/(V s) recorded at 3.6 × 105 V/cm. The other compounds demonstrated hole-transporting properties. The films of thioxanthones containing phenoxazine or 2,7-di-tert-butyl-9,9-dimethylacridane moieties showed efficient thermally activated delayed fluorescence with a photoluminescence quantum yield of up to 50% due to the solid-state luminescence enhancement. Organic-light-emitting diodes containing the synthesized compounds as emitters showed very different external quantum efficiencies (0.9-10.3%) and blue, sky blue, green, or yellow electroluminescence colors, thus reflecting the effects of donor substituents.
Collapse
Affiliation(s)
- Simas Macionis
- Department
of Polymer Chemistry and Technology, Kaunas
University of Technology, K. Barsausko st. 59, LT-51423 Kaunas, Lithuania
| | - Dalius Gudeika
- Department
of Polymer Chemistry and Technology, Kaunas
University of Technology, K. Barsausko st. 59, LT-51423 Kaunas, Lithuania
| | - Dmytro Volyniuk
- Department
of Polymer Chemistry and Technology, Kaunas
University of Technology, K. Barsausko st. 59, LT-51423 Kaunas, Lithuania
| | - Malek Mahmoudi
- Department
of Polymer Chemistry and Technology, Kaunas
University of Technology, K. Barsausko st. 59, LT-51423 Kaunas, Lithuania
| | - Jurate Simokaitiene
- Department
of Polymer Chemistry and Technology, Kaunas
University of Technology, K. Barsausko st. 59, LT-51423 Kaunas, Lithuania
| | - Viktorija Andruleviciene
- Department
of Polymer Chemistry and Technology, Kaunas
University of Technology, K. Barsausko st. 59, LT-51423 Kaunas, Lithuania
| | - Murad Najafov
- Department
of Polymer Chemistry and Technology, Kaunas
University of Technology, K. Barsausko st. 59, LT-51423 Kaunas, Lithuania
| | - Rita Sadzeviciene
- Department
of Organic Chemistry, Center for Physical
Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Sigitas Stoncius
- Department
of Organic Chemistry, Center for Physical
Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Juozas V. Grazulevicius
- Department
of Polymer Chemistry and Technology, Kaunas
University of Technology, K. Barsausko st. 59, LT-51423 Kaunas, Lithuania
- Email
for J.V.G.:
| |
Collapse
|
3
|
Li C, Harrison AK, Liu Y, Zhao Z, Zeng C, Dias FB, Ren Z, Yan S, Bryce MR. Asymmetrical-Dendronized TADF Emitters for Efficient Non-doped Solution-Processed OLEDs by Eliminating Degenerate Excited States and Creating Solely Thermal Equilibrium Routes. Angew Chem Int Ed Engl 2022; 61:e202115140. [PMID: 34870886 PMCID: PMC9306820 DOI: 10.1002/anie.202115140] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Indexed: 12/03/2022]
Abstract
The mechanism of thermally activated delayed fluorescence (TADF) in dendrimers is not clear. We report that fully-conjugated or fully-nonconjugated structures cause unwanted degenerate excited states due to multiple identical dendrons, which limit their TADF efficiency. We have synthesized asymmetrical "half-dendronized" and "half-dendronized-half-encapsulated" emitters. By eliminating degenerate excited states, the triplet locally excited state is ≥0.3 eV above the lowest triplet charge-transfer state, assuring a solely thermal equilibrium route for an effective spin-flip process. The isolated encapsulating tricarbazole unit can protect the TADF unit, reducing nonradiative decay and enhancing TADF performance. Non-doped solution-processed devices reach a high external quantum efficiency (EQEmax ) of 24.0 % (65.9 cd A-1 , 59.2 lm W-1 ) with CIE coordinates of (0.24, 0.45) with a low efficiency roll-off and EQEs of 23.6 % and 21.3 % at 100 and 500 cd m-2 .
Collapse
Affiliation(s)
- Chensen Li
- State Key Laboratory of Chemical Resource EngineeringCollege of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
- Chemistry DepartmentDurham UniversitySouth RoadDurhamDH1 3LEUK
| | | | - Yuchao Liu
- Key Laboratory of Rubber-PlasticsMinistry of EducationQingdao University of Science & TechnologyQingdao266042P.R. China
| | - Zhennan Zhao
- State Key Laboratory of Chemical Resource EngineeringCollege of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Cheng Zeng
- Key Laboratory of Rubber-PlasticsMinistry of EducationQingdao University of Science & TechnologyQingdao266042P.R. China
| | | | - Zhongjie Ren
- State Key Laboratory of Chemical Resource EngineeringCollege of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Shouke Yan
- State Key Laboratory of Chemical Resource EngineeringCollege of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
- Key Laboratory of Rubber-PlasticsMinistry of EducationQingdao University of Science & TechnologyQingdao266042P.R. China
| | - Martin R. Bryce
- Chemistry DepartmentDurham UniversitySouth RoadDurhamDH1 3LEUK
| |
Collapse
|
4
|
Chu B, Zhang H, Hu L, Liu B, Zhang C, Zhang X, Tang BZ. Altering Chain Flexibility of Aliphatic Polyesters for Yellow‐Green Clusteroluminescence in 38 % Quantum Yield. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bo Chu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Haoke Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Lanfang Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Bin Liu
- School of Energy and Power Engineering North University of China Taiyuan 03005 China
| | - Chengjian Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Xinghong Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology School of Science and Engineering The Chinese University of Hong Kong Shenzhen 518172 China
- The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| |
Collapse
|
5
|
Li C, Harrison AK, Liu Y, Zhao Z, Zeng C, Dias FB, Ren Z, Yan S, Bryce MR. Asymmetrical‐Dendronized TADF Emitters for Efficient Non‐doped Solution‐Processed OLEDs by Eliminating Degenerate Excited States and Creating Solely Thermal Equilibrium Routes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chensen Li
- State Key Laboratory of Chemical Resource Engineering College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
- Chemistry Department Durham University South Road Durham DH1 3LE UK
| | | | - Yuchao Liu
- Key Laboratory of Rubber-Plastics Ministry of Education Qingdao University of Science & Technology Qingdao 266042 P.R. China
| | - Zhennan Zhao
- State Key Laboratory of Chemical Resource Engineering College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Cheng Zeng
- Key Laboratory of Rubber-Plastics Ministry of Education Qingdao University of Science & Technology Qingdao 266042 P.R. China
| | - Fernando B. Dias
- Physics Department Durham University South Road Durham DH1 3LE UK
| | - Zhongjie Ren
- State Key Laboratory of Chemical Resource Engineering College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Shouke Yan
- State Key Laboratory of Chemical Resource Engineering College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
- Key Laboratory of Rubber-Plastics Ministry of Education Qingdao University of Science & Technology Qingdao 266042 P.R. China
| | - Martin R. Bryce
- Chemistry Department Durham University South Road Durham DH1 3LE UK
| |
Collapse
|
6
|
Chu B, Zhang H, Hu L, Liu B, Zhang C, Zhang X, Tang BZ. Altering Chain Flexibility of Aliphatic Polyesters for Yellow-Green Clusteroluminescence in 38 % Quantum Yield. Angew Chem Int Ed Engl 2021; 61:e202114117. [PMID: 34820976 DOI: 10.1002/anie.202114117] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Indexed: 11/11/2022]
Abstract
Preparation of non-conjugated polymers with long-wavelength emission and high quantum yield (QY) is still a huge challenge. Herein, we report the first example of linear non-conjugated polyester exhibiting yellow-green clusteroluminescence (CL) and a high QY of 38 %. We discovered that the polyester P3 with balanced flexibility and rigidity showed the longest CL wavelength and highest QY. Systematically photophysical characterization unravel the key role of ester cluster in the CL and the cluster formation via the aggregate of ester units was visualized. Moreover, P3 was demonstrated to be a highly selective, quick-responsive (ca. 1.2 min) and sensitive detector (detection limit is 0.78 μM) for irons owing to the fast disassociation of clusters by irons. This work not only gains further mechanistic insight into CL but also provides a new strategy to design high-efficiency and long-wavelength CL, meanwhile, enlightens the glorious application prospect of luminescent polyester.
Collapse
Affiliation(s)
- Bo Chu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haoke Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China.,Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Lanfang Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Bin Liu
- School of Energy and Power Engineering, North University of China, Taiyuan, 03005, China
| | - Chengjian Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xinghong Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China.,The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
7
|
Wang YF, Li M, Teng JM, Zhou HY, Zhao WL, Chen CF. Chiral TADF-Active Polymers for High-Efficiency Circularly Polarized Organic Light-Emitting Diodes. Angew Chem Int Ed Engl 2021; 60:23619-23624. [PMID: 34490710 DOI: 10.1002/anie.202110794] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/27/2021] [Indexed: 12/11/2022]
Abstract
A strategy of chiral donor-acceptor copolymerization is proposed to develop chiral nonconjugated polymers with thermally activated delayed fluorescence (TADF). Based on this strategy, two pairs of chiral polymers (R,R)-/(S,S)-pTpAcDPS and (R,R)-/(S,S)-pTpAcBP were synthesized. The alternating copolymerization of the chiral donors and acceptors could effectively separate the frontier molecular orbitals, which made the polymers show small ΔEST of 0.01-0.03 eV and efficient TADF properties. Moreover, the polymers also showed the quantum yield of up to 92 % and the circularly polarized luminescence. The solution-processed circularly polarized organic light-emitting diodes showed circularly polarized electroluminescence signals with high external quantum efficiencies of up to 22.1 % and maximum luminance of up to 34350 cd m-2 . This is the first report of CP-OLEDs based on chiral TADF polymer, which provides a useful and valuable guidance for the development of high-efficiency CPEL polymers.
Collapse
Affiliation(s)
- Yin-Feng Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jin-Ming Teng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - He-Ye Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Long Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Chiral TADF‐Active Polymers for High‐Efficiency Circularly Polarized Organic Light‐Emitting Diodes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110794] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Versatile Direct Cyclization Constructs Spiro‐acridan Derivatives for Highly Efficient TADF emitters. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Liu H, Liu Z, Li G, Huang H, Zhou C, Wang Z, Yang C. Versatile Direct Cyclization Constructs Spiro‐acridan Derivatives for Highly Efficient TADF emitters. Angew Chem Int Ed Engl 2021; 60:12376-12380. [DOI: 10.1002/anie.202103187] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 12/16/2022]
Affiliation(s)
- He Liu
- College of Materials Science and Engineering Shenzhen University Shenzhen 518055 P. R. China
| | - Zhiwen Liu
- College of Materials Science and Engineering Shenzhen University Shenzhen 518055 P. R. China
| | - Ganggang Li
- State Key Laboratory of Luminescent Materials and Devices Center for Aggregation-Induced Emission Guangzhou International Campus South China University of Technology (SCUT) Guangzhou 510640 P. R. China
| | - Huaina Huang
- College of Materials Science and Engineering Shenzhen University Shenzhen 518055 P. R. China
| | - Changjiang Zhou
- College of Materials Science and Engineering Shenzhen University Shenzhen 518055 P. R. China
| | - Zhiming Wang
- State Key Laboratory of Luminescent Materials and Devices Center for Aggregation-Induced Emission Guangzhou International Campus South China University of Technology (SCUT) Guangzhou 510640 P. R. China
| | - Chuluo Yang
- College of Materials Science and Engineering Shenzhen University Shenzhen 518055 P. R. China
| |
Collapse
|