1
|
Morere J, Hognon C, Miclot T, Jiang T, Dumont E, Barone G, Monari A, Bignon E. How Fragile We Are: Influence of Stimulator of Interferon Genes (STING) Variants on Pathogen Recognition and Immune Response Efficiency. J Chem Inf Model 2022; 62:3096-3106. [PMID: 35675714 DOI: 10.1021/acs.jcim.2c00315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The stimulator of interferon genes (STING) protein is a cornerstone of the human immune response. Its activation by cGAMP in the presence of cytosolic DNA stimulates the production of type I interferons and inflammatory cytokines. In the human population, several STING variants exist and exhibit dramatic differences in their activity, impacting the efficiency of the host defense against infections. Understanding the molecular mechanisms of these variants opens perspectives for personalized medicine treatments against diseases such as viral infections, cancers, or autoinflammatory diseases. Through microsecond-scale molecular modeling simulations, contact analyses, and machine learning techniques, we reveal the dynamic behavior of four STING variants (wild type, G230A, R293Q, and G230A/R293Q) and rationalize the variability of efficiency observed experimentally. Our results show that the decrease in STING activity is linked to a stiffening of key structural elements of the binding cavity together with changes in the interaction patterns within the protein.
Collapse
Affiliation(s)
- Jeremy Morere
- Université de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France
| | - Cécilia Hognon
- Université de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France
| | - Tom Miclot
- Université de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France.,Department of Biological, Chemical and Pharmaceutical Sciences, Universita degli Studi di Palermo, via delle Scienze, 90126 Palermo, Italy
| | - Tao Jiang
- Université de Lyon, ENS de Lyon, CNRS UMR 5182, Laboratoire de Chimie, F-69342 Lyon, France
| | - Elise Dumont
- Université de Lyon, ENS de Lyon, CNRS UMR 5182, Laboratoire de Chimie, F-69342 Lyon, France.,Institut Universitaire de France, 5 rue Descartes, F-75005 Paris, France
| | - Giampaolo Barone
- Department of Biological, Chemical and Pharmaceutical Sciences, Universita degli Studi di Palermo, via delle Scienze, 90126 Palermo, Italy
| | - Antonio Monari
- Université de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France.,Université Paris Cité and CNRS, ITODYS, F-75006, Paris, France
| | - Emmanuelle Bignon
- Université de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France
| |
Collapse
|
2
|
Zhou J, Ventura CJ, Fang RH, Zhang L. Nanodelivery of STING agonists against cancer and infectious diseases. Mol Aspects Med 2022; 83:101007. [PMID: 34353637 PMCID: PMC8792206 DOI: 10.1016/j.mam.2021.101007] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 02/03/2023]
Abstract
Vaccination is a modality that has been widely explored for the treatment of various diseases. To increase the potency of vaccine formulations, immunostimulatory adjuvants have been regularly exploited, and the stimulator of interferon genes (STING) signaling pathway has recently emerged as a remarkable therapeutic target. STING is an endogenous protein on the endoplasmic reticulum that is a downstream sensor to cytosolic DNA. Upon activation, STING initiates a series of intracellular signaling cascades that ultimately generate potent type I interferon-mediated immune responses. Both natural and synthetic agonists have been used to stimulate the STING pathway, but they are usually administered locally due to low bioavailability, instability, and difficulty in bypassing the plasma membrane. With excellent pharmacokinetic profiles and versatility, nanocarriers can address many of these challenges and broaden the application of STING vaccines. Along these lines, STING-inducing nanovaccines are being developed to address a wide range of diseases. In this review, we discuss the recent advances in STING nanovaccines for anticancer, antiviral, and antibacterial applications.
Collapse
Affiliation(s)
- Jiarong Zhou
- Department of NanoEngineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Christian J Ventura
- Department of NanoEngineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|