1
|
Zhang J, Wang S, Song P, Li A, Jiang W, Di J. Copper porphyrin modified BiOBr/Bi 19S 27Br 3 for efficient CO 2 photoreduction. J Colloid Interface Sci 2025; 679:383-390. [PMID: 39461127 DOI: 10.1016/j.jcis.2024.10.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/17/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
The insufficient solar light response ability of the photocatalyst, rapid recombination of interface charges, and lack of active sites significantly inhibit the efficiency of photocatalytic CO2 reduction. Addressing these challenges simultaneously is a very challenging task. Herein, an interface engineering coupled surface polarization strategy is proposed to optimize the CO2 photoreduction performance. The copper tetracarboxyphenylporphyrin (CuTCPP) modified BiOBr/Bi19S27Br3 (BBS) heterostructure was developed. The built-in electric field formed between BiOBr and Bi19S27Br3 interfaces induces the effective interfacial charge separation, while the surface polarization of CuTCPP induces the transfer of electrons from the conduction band (CB) of BBS to the CB of CuTCPP. Benefiting from this unique configuration and abundant active sites in CuTCPP, greatly improved photocatalytic CO2 reduction performance can be realized. Without adding cocatalysts and sacrificial agents, the optimized CO generation performance of CuTCPP-BiOBr/Bi19S27Br3 (BBS-CT) is 3.5 times higher than that of BBS. This work provides valuable insights of interface engineering coupled surface polarization strategy for collaborative improve the photocatalytic CO2 reduction performance.
Collapse
Affiliation(s)
- Jiajing Zhang
- School of Chemistry and Chemical Engineering, National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Suwei Wang
- School of Chemistry and Chemical Engineering, National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Pin Song
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Engineering Research Center of Carbon Neutrality, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China.
| | - Ang Li
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Wei Jiang
- School of Chemistry and Chemical Engineering, National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Jun Di
- School of Chemistry and Chemical Engineering, National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing 210094, China; Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Engineering Research Center of Carbon Neutrality, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China.
| |
Collapse
|
2
|
Arif M, Mahsud A, Xing H, Hannan Zahid A, Liang Q, Amjad Majeed M, Ali A, Li X, Lu Z, Leonard Deepak F, Muhmood T, Chen Y. Modulating the local electron density at built-in interface iron single sites in Fe-CN/MoO 3 heterostructure for enhanced CO 2 reduction to CH 4 and photo-Fenton reaction. J Colloid Interface Sci 2024; 680:1053-1066. [PMID: 39549349 DOI: 10.1016/j.jcis.2024.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/11/2024] [Accepted: 11/06/2024] [Indexed: 11/18/2024]
Abstract
The catalytic efficiency of heterogeneous photocatalytic CO2 reduction and photo-Fenton H2O2 activationisclosely related to the local electron density of reaction center atoms. However, electron-hole recombination from random charge transfer significantly restricts the targeted electron delivery to the active center. Herein, Fe-C3N4/MoO3 heterojunction with interfacial coordination of atomically dispersed Fe-N4 sites with the O interface of MoO3 was synthesized by simple hydrothermal method. Based on the experimental results and density functional theory calculation (DFT), the heterojunction structure fosters accelerated interfacial electron transfer due to directional interfacial electric field (IEF) between Fe-CN and MoO heterogeneous interfaces, and the interfacial bond between Fe-N4 sites and O at the built-in interface regulates the local electron density of Fe-N4 active center. DFT further reveals that the interfacial electron flow and concentrated electron density at Fe-N4 sites result from the coordination between Fe-N4 and MoO3 interfaces. This directs electron flow towards the Fe center, significantly enhancing CO2 adsorption and H2O2 conversion efficiency. PDOS analysis shows that the dyz and dz2 orbitals of the isolated Fe atom in Fe-CN overlap with the pz orbital of the O atom in MoO3, playing a pivotal role in CO2 adsorption. Consequently, the Fe-CN/MoO3 heterojunction demonstrated highly efficient photocatalytic CO2 reduction to CH4, coupled with benzyl alcohol oxidation and photo-Fenton tetracycline degradation. These findings offer a promising multifunctional catalyst strategy for the development of energy conversion and environmental remediation.
Collapse
Affiliation(s)
- Muhammad Arif
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Ayaz Mahsud
- School of Physics, Henan Key Laboratory of Advanced Semiconductor & Functional Device Integration, Henan Normal University, Xinxiang 453007, China
| | - Haoran Xing
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Street, Nanjing 210023, China
| | - Abdul Hannan Zahid
- Department of Chemical Engineering, University of Gujrat, Gujrat 50700, Pakistan
| | - Qian Liang
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Muhammad Amjad Majeed
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Amjad Ali
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping SE-60174, Sweden
| | - Xiazhang Li
- National-local Joint Engineering Research Center of Biomass Refining and High-quality Utilization, Changzhou University, Changzhou 213164, China
| | - Zhansheng Lu
- School of Physics, Henan Key Laboratory of Advanced Semiconductor & Functional Device Integration, Henan Normal University, Xinxiang 453007, China; College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Francis Leonard Deepak
- International Iberian Nanotechnology Laboratory, avenida mestre josé veiga, Braga 4715-310, Portugal
| | - Tahir Muhmood
- International Iberian Nanotechnology Laboratory, avenida mestre josé veiga, Braga 4715-310, Portugal.
| | - Yinjuan Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
3
|
Wu F, Zhang X, Wang L, Li G, Huang J, Song A, Meng A, Li Z. Enhanced Spin-Polarized Electric Field Modulating p-Band Center on Ni-Doped CdS for Boosting Photocatalytic Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309439. [PMID: 38267824 DOI: 10.1002/smll.202309439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/05/2024] [Indexed: 01/26/2024]
Abstract
It is a challenge to regulate charge separation dynamics and redox reaction kinetics at the atomic level to synergistically boost photocatalytic hydrogen (H2) evolution. Herein, a robust Ni-doped CdS (Ni-CdS) photocatalyst is synthesized by incorporating highly dispersed Ni atoms into the CdS lattice in substitution for Cd atoms. Combined characterizations with theoretical analysis indicate that local lattice distortion and S-vacancy of Ni-CdS induced by Ni incorporation lead to an increased dipole moment and enhanced spin-polarized electric field, which promotes the separation and transfer of photoinduced carriers. In this contribution, charge redistribution caused by enhanced internal electric field results in the downshift of the S p-band center, which is conducive to the desorption of intermediate H* for boosting the H2 evolution reaction. Accordingly, the Ni-CdS photocatalyst shows a remarkably improved photocatalytic performance with an H2 evolution rate of 20.28 mmol g-1 h-1 under visible-light irradiation, which is 5.58 times higher than that of pristine CdS. This work supplied an insightful understanding that the enhanced polarization electric field governs the p-band center for efficient photocatalytic H2 evolution activity.
Collapse
Affiliation(s)
- Fei Wu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xinlei Zhang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Lei Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Guicun Li
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Jianfeng Huang
- School of Material Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Aili Song
- Qingdao Huanghai University, Qingdao, 266000, P. R. China
| | - Alan Meng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Zhenjiang Li
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
4
|
Yan X, Zhang J, Hao G, Jiang W, Di J. 2D Atomic Layers for CO 2 Photoreduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306742. [PMID: 37840450 DOI: 10.1002/smll.202306742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/19/2023] [Indexed: 10/17/2023]
Abstract
Artificial photosynthesis can convert carbon dioxide into high value-added chemicals. However, due to the poor charge separation efficiency and CO2 activation ability, the conversion efficiency of photocatalytic CO2 reduction is greatly restricted. Ultrathin 2D photocatalyst emerges as an alternative to realize the higher CO2 reduction performance. In this review, the basic principle of CO2 photoreduction is introduced, and the types, advantages, and advances of 2D photocatalysts are reviewed in detail including metal oxides, metal chalcogenides, bismuth-based materials, MXene, metal-organic framework, and metal-free materials. Subsequently, the tactics for improving the performance of 2D photocatalysts are introduced in detail via the surface atomic configuration and electronic state tuning such as component tuning, crystal facet control, defect engineering, element doping, cocatalyst modification, polarization, and strain engineering. Finally, the concluding remarks and future development of 2D photocatalysts in CO2 reduction are prospected.
Collapse
Affiliation(s)
- Xihang Yan
- School of Chemistry and Chemical Engineering, National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jiajing Zhang
- School of Chemistry and Chemical Engineering, National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Gazi Hao
- School of Chemistry and Chemical Engineering, National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wei Jiang
- School of Chemistry and Chemical Engineering, National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jun Di
- School of Chemistry and Chemical Engineering, National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing, 210094, China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, China
| |
Collapse
|
5
|
Han C, Kundu BK, Liang Y, Sun Y. Near-Infrared Light-Driven Photocatalysis with an Emphasis on Two-Photon Excitation: Concepts, Materials, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307759. [PMID: 37703435 DOI: 10.1002/adma.202307759] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/01/2023] [Indexed: 09/15/2023]
Abstract
Efficient utilization of sunlight in photocatalysis is widely recognized as a promising solution for addressing the growing energy demand and environmental issues resulting from fossil fuel consumption. Recently, there have been significant developments in various near-infrared (NIR) light-harvesting systems for artificial photosynthesis and photocatalytic environmental remediation. This review provides an overview of the most recent advancements in the utilization of NIR light through the creation of novel nanostructured materials and molecular photosensitizers, as well as modulating strategies to enhance the photocatalytic processes. A special focus is given to the emerging two-photon excitation NIR photocatalysis. The unique features and limitations of different systems are critically evaluated. In particular, it highlights the advantages of utilizing NIR light and two-photon excitation compared to UV-visible irradiation and one-photon excitation. Ongoing challenges and potential solutions for the future exploration of NIR light-responsive materials are also discussed.
Collapse
Affiliation(s)
- Chuang Han
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei, 430074, China
| | - Bidyut Kumar Kundu
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Yujun Liang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei, 430074, China
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| |
Collapse
|
6
|
Guo F, Li RX, Yang S, Zhang XY, Yu H, Urban JJ, Sun WY. Designing Heteroatom-Codoped Iron Metal-Organic Framework for Promotional Photoreduction of Carbon Dioxide to Ethylene. Angew Chem Int Ed Engl 2023; 62:e202216232. [PMID: 36748922 DOI: 10.1002/anie.202216232] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/08/2023]
Abstract
Rational engineering active sites and vantage defects of catalysts are promising but grand challenging task to enhance photoreduction CO2 to high value-added C2 products. In this study, we designed an N,S-codoped Fe-based MIL-88B catalyst with well-defined bipyramidal hexagonal prism morphology via a facile and effective process, which was synthesized by addition of appropriate 1,2-benzisothiazolin-3-one (BIT) and acetic acid to the reaction solution. Under simulated solar irradiation, the designed catalyst exhibits high C2 H4 evolution yield of 17.7 μmol g-1 ⋅h, which has been rarely achieved in photocatalytic CO2 reduction process. The synergistic effect of Fe-N coordinated sites and reasonable defects in the N,S-codoped photocatalyst can accelerate the migration of photogenerated carriers, resulting in high electron density, and this in turn helps to facilitate the formation and dimerization of C-C coupling intermediates for C2 H4 effectively.
Collapse
Affiliation(s)
- Fan Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.,Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Rui-Xia Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Sizhuo Yang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA
| | - Xiao-Yu Zhang
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Hongjian Yu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Jeffrey J Urban
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA
| | - Wei-Yin Sun
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
7
|
Wu X, Zhang W, Li J, Xiang Q, Liu Z, Liu B. Identification of the Active Sites on Metallic MoO 2-x Nano-Sea-Urchin for Atmospheric CO 2 Photoreduction Under UV, Visible, and Near-Infrared Light Illumination. Angew Chem Int Ed Engl 2023; 62:e202213124. [PMID: 36321396 DOI: 10.1002/anie.202213124] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/07/2022]
Abstract
We report an oxygen vacancy (Vo )-rich metallic MoO2-x nano-sea-urchin with partially occupied band, which exhibits super CO2 (even directly from the air) photoreduction performance under UV, visible and near-infrared (NIR) light illumination. The Vo -rich MoO2-x nano-sea-urchin displays a CH4 evolution rate of 12.2 and 5.8 μmol gcatalyst -1 h-1 under full spectrum and NIR light illumination in concentrated CO2 , which is ca. 7- and 10-fold higher than the Vo -poor MoO2-x , respectively. More interestingly, the as-developed Vo -rich MoO2-x nano-sea-urchin can even reduce CO2 directly from the air with a CO evolution rate of 6.5 μmol gcatalyst -1 h-1 under NIR light illumination. Experiments together with theoretical calculations demonstrate that the oxygen vacancy in MoO2-x can facilitate CO2 adsorption/activation to generate *COOH as well as the subsequent protonation of *CO towards the formation of CH4 because of the formation of a highly stable Mo-C-O-Mo intermediate.
Collapse
Affiliation(s)
- Xi Wu
- Henan Institute of Advanced Technology, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, P.R. China
| | - Wenlei Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P.R. China
| | - Jun Li
- Henan Institute of Advanced Technology, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, P.R. China.,College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P.R. China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Quanjun Xiang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P.R. China
| | - Zhongyi Liu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P.R. China
| | - Bin Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.,Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China
| |
Collapse
|
8
|
Wu X, Zhang W, Li J, Xiang Q, Liu Z, Liu B. Identification of the Active Sites on Metallic MoO
2−
x
Nano‐Sea‐Urchin for Atmospheric CO
2
Photoreduction Under UV, Visible, and Near‐Infrared Light Illumination. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202213124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Xi Wu
- Henan Institute of Advanced Technology School of Materials Science and Engineering Zhengzhou University Zhengzhou 450052 P.R. China
| | - Wenlei Zhang
- College of Chemistry Zhengzhou University Zhengzhou 450001 P.R. China
| | - Jun Li
- Henan Institute of Advanced Technology School of Materials Science and Engineering Zhengzhou University Zhengzhou 450052 P.R. China
- College of Chemistry Zhengzhou University Zhengzhou 450001 P.R. China
- School of Chemistry, Chemical Engineering and Biotechnology Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Quanjun Xiang
- State Key Laboratory of Electronic Thin Film and Integrated Devices University of Electronic Science and Technology of China Chengdu 610054 P.R. China
| | - Zhongyi Liu
- College of Chemistry Zhengzhou University Zhengzhou 450001 P.R. China
| | - Bin Liu
- School of Chemistry, Chemical Engineering and Biotechnology Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
- Department of Materials Science and Engineering City University of Hong Kong Hong Kong 999077 China
| |
Collapse
|
9
|
Ou S, Zhou M, Chen W, Zhang Y, Liu Y. COF-5/CoAl-LDH Nanocomposite Heterojunction for Enhanced Visible-Light-Driven CO 2 Reduction. CHEMSUSCHEM 2022; 15:e202200184. [PMID: 35187792 DOI: 10.1002/cssc.202200184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Photocatalytic conversion of CO2 into value-added chemical fuels is an attractive route to mitigate global warming and the energy crisis. Reasonable design of optical properties and electronic behavior of the photocatalyst are essential to improve their catalytic activity. Herein, the 1D/2D heterojunction by direct in-situ synthesis of the covalent organic framework (COF)-5 colloid on the surface of CoAl layered double hydroxide (LDH) was used as the prospective photocatalyst for CO2 reduction. COF-5/CoAl-LDH nanocomposite achieved 265.4 μmol g-1 of CO with 94.6 % selectivity over CH4 evolution in 5 h under visible light irradiation, which was 4.8 and 2.3 times higher than those of COF-5 colloid and CoAl-LDH, respectively. The enhanced catalytic activity was derived from the increased visible-light activity and the construction of type II-2 heterojunction, which greatly optimized visible light harvesting and accelerated the efficient separation of the photoinduced holes and electrons. This work paves the way for rational design of heterojunction catalysts in photocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Siyong Ou
- State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Min Zhou
- State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Wen Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Yuyao Zhang
- State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Yueli Liu
- State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|