1
|
Xie Y, Wang X, Qu Z, Ning P, Wang L, Xu H, Huang W, Lu J, Luo J. Enhancing AsH 3 Detoxification via Electron-Deficient [Ni III-OH (μ-O)] in a Nickel-Modified NaY Zeolite: A Pathway toward As 0 Products. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6704-6715. [PMID: 38574268 DOI: 10.1021/acs.est.4c00120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
The transformation of toxic arsine (AsH3) gas into valuable elemental arsenic (As0) from industrial exhaust gases is important for achieving sustainable development goals. Although advanced arsenic removal catalysts can improve the removal efficiency of AsH3, toxic arsenic oxides generated during this process have not received adequate attention. In light of this, a novel approach for obtaining stable As0 products was proposed by performing controlled moderate oxidation. We designed a tailored Ni-based catalyst through an acid etching approach to alter interactions between Ni and NaY. As a result, the 1Ni/NaY-H catalyst yielded an unprecedented proportion of As0 as the major product (65%), which is superior to those of other reported catalysts that only produced arsenic oxides. Density functional theory calculations clarified that Ni species changed the electronic structure of oxygen atoms, and the formed [NiIII-OH (μ-O)] active centers facilitated the adsorption of AsH2*, AsH*, and As* reaction intermediates for As-H bond cleavage, thereby decreasing the direct reactivity of oxygen with the arsenic intermediates. This work presents pioneering insights into inhibiting excessive oxidation during AsH3 removal, demonstrating potential environmental applications for recovery of As0 from toxic AsH3.
Collapse
Affiliation(s)
- Yibing Xie
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xueqian Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Zan Qu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Langlang Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Haomiao Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenjun Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jichang Lu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Jianfei Luo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
2
|
Wang C, Zhao X, Hu M, Qi G, Wang Q, Li S, Xu J, Deng F. Unraveling Hydrocarbon Pool Boosted Propane Aromatization on Gallium/ZSM-5 Zeolite by Solid-State Nuclear Magnetic Resonance Spectroscopy. Angew Chem Int Ed Engl 2021; 60:23630-23634. [PMID: 34490714 DOI: 10.1002/anie.202111111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/04/2021] [Indexed: 11/08/2022]
Abstract
Propane aromatization on metal-modified zeolites provides a promising route to produce valuable chemicals such as benzene, toluene and xylene via non-petroleum feedstocks. The mechanistic understanding of propane conversion to aromatics is still challenging due to the complexity of the aromatization process. Herein, by using solid-state NMR spectroscopy and GC-MS, it is shown that cyclopentenyl cations are formed as active intermediates during propane aromatization on Ga/ZSM-5 zeolite. Autocatalysis of propane to aromatics is identified in the induction period. The cyclopentenyl cations serve as key hydrocarbon pool species to co-catalyze propane conversion and promote aromatics formation, revealing a dominant hydrocarbon pool process in propane aromatization.
Collapse
Affiliation(s)
- Chao Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xingling Zhao
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,College of Chemistry & Chemical and Environmental Engineering, Weifang University, Weifang, 261061, China
| | - Min Hu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guodong Qi
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shenhui Li
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Xu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Deng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Wang C, Zhao X, Hu M, Qi G, Wang Q, Li S, Xu J, Deng F. Unraveling Hydrocarbon Pool Boosted Propane Aromatization on Gallium/ZSM‐5 Zeolite by Solid‐State Nuclear Magnetic Resonance Spectroscopy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chao Wang
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xingling Zhao
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 China
- University of Chinese Academy of Sciences Beijing 100049 China
- College of Chemistry & Chemical and Environmental Engineering Weifang University Weifang 261061 China
| | - Min Hu
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Guodong Qi
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Qiang Wang
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Shenhui Li
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jun Xu
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Feng Deng
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|