1
|
Peng M, Shin K, Jiang L, Jin Y, Zeng K, Zhou X, Tang Y. Alloy-Type Anodes for High-Performance Rechargeable Batteries. Angew Chem Int Ed Engl 2022; 61:e202206770. [PMID: 35689344 DOI: 10.1002/anie.202206770] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Indexed: 12/18/2022]
Abstract
Alloy-type anodes are one of the most promising classes of next-generation anode materials due to their ultrahigh theoretical capacity (2-10 times that of graphite). However, current alloy-type anodes have several limitations: huge volume expansion, high tendency to fracture and disintegrate, an unstable solid-electrolyte interphase (SEI) layer, and low Coulombic efficiency. Efforts to overcome these challenges are ongoing. This Review details recent progress in the research of batteries based on alloy-type anodes and discusses the direction of their future development. We conclude that improvements in structural design, the introduction of a protective interface, and the selection of suitable electrolytes are the most effective ways to improve the performance of alloy-type anodes. Furthermore, future studies should direct more attention toward analyzing their synergistic promoting effect.
Collapse
Affiliation(s)
- Manqi Peng
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Kyungsoo Shin
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lixia Jiang
- Bureau of Major R&D Programs, Chinese Academy of Sciences, Beijing, 100864, China
| | - Ye Jin
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Ke Zeng
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Xiaolong Zhou
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongbing Tang
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Key Laboratory of Adv. Mater. Processing & Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450002, China
| |
Collapse
|
2
|
Fiesinger F, Gaissmaier D, van den Borg M, Jacob T. First-Principles Studies on the Atomistic Properties of Metallic Magnesium as Anode Material in Magnesium-Ion Batteries. CHEMSUSCHEM 2022; 15:e202200414. [PMID: 35353957 PMCID: PMC9401065 DOI: 10.1002/cssc.202200414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/29/2022] [Indexed: 06/02/2023]
Abstract
Rechargeable magnesium-ion batteries (MIBs) are a promising alternative to commercial lithium-ion batteries (LIBs). They are safer to handle, environmentally more friendly, and provide a five-time higher volumetric capacity (3832 mAh cm-3 ) than commercialized LIBs. However, the formation of a passivation layer on metallic Mg electrodes is still a major challenge towards their commercialization. Using density functional theory (DFT), the atomistic properties of metallic magnesium, mainly well-selected self-diffusion processes on perfect and imperfect Mg surfaces were investigated to better understand the initial surface growth phenomena. Subsequently, rate constants and activation temperatures of crucial diffusion processes on Mg(0001) and Mg(10 1 ‾ 1) were determined, providing preliminary insights into the surface kinetics of metallic Mg electrodes. The obtained DFT results provide a data set for parametrizing a force field for metallic Mg or performing kinetic Monte-Carlo simulations.
Collapse
Affiliation(s)
- Florian Fiesinger
- Institute of ElectrochemistryUlm UniversityAlbert-Einstein-Allee 4789081UlmGermany
| | - Daniel Gaissmaier
- Institute of ElectrochemistryUlm UniversityAlbert-Einstein-Allee 4789081UlmGermany
- Helmholtz Institute Ulm (HIU) Electrochemical Energy StorageHelmholtzstr. 1189081UlmGermany
- Karlsruhe Institute of Technology (KIT)P.O. Box 364076021KarlsruheGermany
| | | | - Timo Jacob
- Institute of ElectrochemistryUlm UniversityAlbert-Einstein-Allee 4789081UlmGermany
- Helmholtz Institute Ulm (HIU) Electrochemical Energy StorageHelmholtzstr. 1189081UlmGermany
- Karlsruhe Institute of Technology (KIT)P.O. Box 364076021KarlsruheGermany
| |
Collapse
|
3
|
Peng M, Shin K, Jiang L, Jin Y, Zeng K, Zhou X, Tang Y. Alloy‐Type Anodes for High‐Performance Rechargeable Batteries. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Manqi Peng
- Advanced Energy Storage Technology Research Center Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
- School of Materials Science and Engineering Chongqing University of Technology Chongqing 400054 China
| | - Kyungsoo Shin
- Advanced Energy Storage Technology Research Center Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lixia Jiang
- Bureau of Major R&D Programs Chinese Academy of Sciences Beijing 100864 China
| | - Ye Jin
- Advanced Energy Storage Technology Research Center Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
- Nano Science and Technology Institute University of Science and Technology of China Suzhou 215123 China
| | - Ke Zeng
- Advanced Energy Storage Technology Research Center Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
- Nano Science and Technology Institute University of Science and Technology of China Suzhou 215123 China
| | - Xiaolong Zhou
- Advanced Energy Storage Technology Research Center Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yongbing Tang
- Advanced Energy Storage Technology Research Center Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Key Laboratory of Adv. Mater. Processing & Mold, Ministry of Education Zhengzhou University Zhengzhou 450002 China
| |
Collapse
|
4
|
Hou LP, Yao N, Xie J, Shi P, Sun SY, Jin CB, Chen CM, Liu QB, Li BQ, Zhang XQ, Zhang Q. Modification of Nitrate Ion Enables Stable Solid Electrolyte Interphase in Lithium Metal Batteries. Angew Chem Int Ed Engl 2022; 61:e202201406. [PMID: 35233916 DOI: 10.1002/anie.202201406] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 12/25/2022]
Abstract
The lifespan of high-energy-density lithium metal batteries (LMBs) is hindered by heterogeneous solid electrolyte interphase (SEI). The rational design of electrolytes is strongly considered to obtain uniform SEI in working batteries. Herein, a modification of nitrate ion (NO3 - ) is proposed and validated to improve the homogeneity of the SEI in practical LMBs. NO3 - is connected to an ether-based moiety to form isosorbide dinitrate (ISDN) to break the resonance structure of NO3 - and improve the reducibility. The decomposition of non-resonant -NO3 in ISDN enriches SEI with abundant LiNx Oy and induces uniform lithium deposition. Lithium-sulfur batteries with ISDN additives deliver a capacity retention of 83.7 % for 100 cycles compared with rapid decay with LiNO3 after 55 cycles. Moreover, lithium-sulfur pouch cells with ISDN additives provide a specific energy of 319 Wh kg-1 and undergo 20 cycles. This work provides a realistic reference in designing additives to modify the SEI for stabilizing LMBs.
Collapse
Affiliation(s)
- Li-Peng Hou
- Beijing Key Laboratory of Green Chemical, Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Nan Yao
- Beijing Key Laboratory of Green Chemical, Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Jin Xie
- Beijing Key Laboratory of Green Chemical, Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Peng Shi
- Beijing Key Laboratory of Green Chemical, Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Shu-Yu Sun
- Beijing Key Laboratory of Green Chemical, Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Cheng-Bin Jin
- Beijing Key Laboratory of Green Chemical, Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Cheng-Meng Chen
- Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P. R. China
| | - Quan-Bing Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Bo-Quan Li
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xue-Qiang Zhang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, P. R. China.,Shanxi Research Institute for Clean Energy, Tsinghua University, Taiyuan, 030032, P. R. China
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical, Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China.,Shanxi Research Institute for Clean Energy, Tsinghua University, Taiyuan, 030032, P. R. China
| |
Collapse
|
5
|
Hou L, Yao N, Xie J, Shi P, Sun S, Jin C, Chen C, Liu Q, Li B, Zhang X, Zhang Q. Modification of Nitrate Ion Enables Stable Solid Electrolyte Interphase in Lithium Metal Batteries. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Li‐Peng Hou
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing 100084 P. R. China
| | - Nan Yao
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing 100084 P. R. China
| | - Jin Xie
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing 100084 P. R. China
| | - Peng Shi
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing 100084 P. R. China
| | - Shu‐Yu Sun
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing 100084 P. R. China
| | - Cheng‐Bin Jin
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing 100084 P. R. China
| | - Cheng‐Meng Chen
- Key Laboratory of Carbon Materials Institute of Coal Chemistry, Chinese Academy of Sciences Taiyuan 030001 P. R. China
| | - Quan‐Bing Liu
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Bo‐Quan Li
- Advanced Research Institute of Multidisciplinary Science Beijing Institute of Technology Beijing 100081 P. R. China
| | - Xue‐Qiang Zhang
- Advanced Research Institute of Multidisciplinary Science Beijing Institute of Technology Beijing 100081 P. R. China
- Shanxi Research Institute for Clean Energy Tsinghua University Taiyuan 030032 P. R. China
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing 100084 P. R. China
- Shanxi Research Institute for Clean Energy Tsinghua University Taiyuan 030032 P. R. China
| |
Collapse
|