1
|
Chai Z. Heterogeneous Photocatalytic Strategies for C(sp 3 )-H Activation. Angew Chem Int Ed Engl 2024; 63:e202316444. [PMID: 38225893 DOI: 10.1002/anie.202316444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
Activation of ubiquitous C(sp3 )-H bonds is extremely attractive but remains a great challenge. Heterogeneous photocatalysis offers a promising and sustainable approach for C(sp3 )-H activation and has been fast developing in the past decade. This Minireview focuses on mechanism and strategies for heterogeneous photocatalytic C(sp3 )-H activation. After introducing mechanistic insights, heterogeneous photocatalytic strategies for C(sp3 )-H activation including precise design of active sites, regulation of reactive radical species, improving charge separation and reactor innovations are discussed. In addition, recent advances in C(sp3 )-H activation of hydrocarbons, alcohols, ethers, amines and amides by heterogeneous photocatalysis are summarized. Lastly, challenges and opportunities are outlined to encourage more efforts for the development of this exciting and promising field.
Collapse
Affiliation(s)
- Zhigang Chai
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
2
|
Bo C, Li M, Chen F, Liu J, Dai B, Liu N. Visible-Light-Initiated Air-Oxygenation of Alkylarenes to Carbonyls Mediated by Carbon Tetrabromide in Water. CHEMSUSCHEM 2024; 17:e202301015. [PMID: 37661194 DOI: 10.1002/cssc.202301015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/05/2023]
Abstract
Synthesizing benzyl skeleton derivatives via direct oxidation of functionalized benzylic C-H bonds has received extensive research attention. Herein, a method was developed to prepare carbonyl compounds via photoinduced aerobic oxidation of ubiquitous benzylic C-H bonds mediated by bromine radicals and tribromomethane radicals. This method employed commercially available CBr4 as a hydrogen atom transfer reagent precursor, air as an oxidant, water as a reaction solvent, and tetrabutylammonium perchlorate (TBAPC) as an additive under mild conditions. A series of substrates bearing different functional groups was converted to aromatic carbonyls in moderate to good yields. Moreover, a low environmental factor (E-factor value=0.45) showed that the proposed method is ecofriendly and environmentally sustainable.
Collapse
Affiliation(s)
- Chunbo Bo
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North Fourth Road, Shihezi, Xinjiang, 832003, China
| | - Min Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North Fourth Road, Shihezi, Xinjiang, 832003, China
| | - Fei Chen
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North Fourth Road, Shihezi, Xinjiang, 832003, China
| | - Jichang Liu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North Fourth Road, Shihezi, Xinjiang, 832003, China
| | - Bin Dai
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North Fourth Road, Shihezi, Xinjiang, 832003, China
| | - Ning Liu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North Fourth Road, Shihezi, Xinjiang, 832003, China
| |
Collapse
|
3
|
Bierbaumer S, Schmermund L, List A, Winkler CK, Glueck SM, Kroutil W. Synthesis of Enantiopure Sulfoxides by Concurrent Photocatalytic Oxidation and Biocatalytic Reduction. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202117103. [PMID: 38505243 PMCID: PMC10946591 DOI: 10.1002/ange.202117103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Indexed: 03/21/2024]
Abstract
The concurrent operation of chemical and biocatalytic reactions in one pot is still a challenging task, and, in particular for chemical photocatalysts, examples besides simple cofactor recycling systems are rare. However, especially due to the complementary chemistry that the two fields of catalysis promote, their combination in one pot has the potential to unlock intriguing, unprecedented overall reactivities. Herein we demonstrate a concurrent biocatalytic reduction and photocatalytic oxidation process. Specifically, the enantioselective biocatalytic sulfoxide reduction using (S)-selective methionine sulfoxide reductases was coupled to an unselective light-dependent sulfoxidation. Protochlorophyllide was established as a new green photocatalyst for the sulfoxidation. Overall, a cyclic deracemization process to produce nonracemic sulfoxides was achieved and the target compounds were obtained with excellent conversions (up to 91 %) and superb optical purity (>99 % ee).
Collapse
Affiliation(s)
- Sarah Bierbaumer
- Institute of Chemistry, Department of Organic and Bioorganic ChemistryUniversity of GrazNAWI GrazBioTechMed GrazField of Excellence BioHealthHeinrichstraße 288010GrazAustria
| | - Luca Schmermund
- Institute of Chemistry, Department of Organic and Bioorganic ChemistryUniversity of GrazNAWI GrazBioTechMed GrazField of Excellence BioHealthHeinrichstraße 288010GrazAustria
| | - Alexander List
- Institute of Chemistry, Department of Organic and Bioorganic ChemistryUniversity of GrazNAWI GrazBioTechMed GrazField of Excellence BioHealthHeinrichstraße 288010GrazAustria
| | - Christoph K. Winkler
- Institute of Chemistry, Department of Organic and Bioorganic ChemistryUniversity of GrazNAWI GrazBioTechMed GrazField of Excellence BioHealthHeinrichstraße 288010GrazAustria
| | - Silvia M. Glueck
- Institute of Chemistry, Department of Organic and Bioorganic ChemistryUniversity of GrazNAWI GrazBioTechMed GrazField of Excellence BioHealthHeinrichstraße 288010GrazAustria
| | - Wolfgang Kroutil
- Institute of Chemistry, Department of Organic and Bioorganic ChemistryUniversity of GrazNAWI GrazBioTechMed GrazField of Excellence BioHealthHeinrichstraße 288010GrazAustria
| |
Collapse
|
4
|
Bierbaumer S, Schmermund L, List A, Winkler CK, Glueck SM, Kroutil W. Synthesis of Enantiopure Sulfoxides by Concurrent Photocatalytic Oxidation and Biocatalytic Reduction. Angew Chem Int Ed Engl 2022; 61:e202117103. [PMID: 35188997 PMCID: PMC9310851 DOI: 10.1002/anie.202117103] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Indexed: 11/18/2022]
Abstract
The concurrent operation of chemical and biocatalytic reactions in one pot is still a challenging task, and, in particular for chemical photocatalysts, examples besides simple cofactor recycling systems are rare. However, especially due to the complementary chemistry that the two fields of catalysis promote, their combination in one pot has the potential to unlock intriguing, unprecedented overall reactivities. Herein we demonstrate a concurrent biocatalytic reduction and photocatalytic oxidation process. Specifically, the enantioselective biocatalytic sulfoxide reduction using (S)-selective methionine sulfoxide reductases was coupled to an unselective light-dependent sulfoxidation. Protochlorophyllide was established as a new green photocatalyst for the sulfoxidation. Overall, a cyclic deracemization process to produce nonracemic sulfoxides was achieved and the target compounds were obtained with excellent conversions (up to 91 %) and superb optical purity (>99 % ee).
Collapse
Affiliation(s)
- Sarah Bierbaumer
- Institute of Chemistry, Department of Organic and Bioorganic ChemistryUniversity of GrazNAWI GrazBioTechMed GrazField of Excellence BioHealthHeinrichstraße 288010GrazAustria
| | - Luca Schmermund
- Institute of Chemistry, Department of Organic and Bioorganic ChemistryUniversity of GrazNAWI GrazBioTechMed GrazField of Excellence BioHealthHeinrichstraße 288010GrazAustria
| | - Alexander List
- Institute of Chemistry, Department of Organic and Bioorganic ChemistryUniversity of GrazNAWI GrazBioTechMed GrazField of Excellence BioHealthHeinrichstraße 288010GrazAustria
| | - Christoph K. Winkler
- Institute of Chemistry, Department of Organic and Bioorganic ChemistryUniversity of GrazNAWI GrazBioTechMed GrazField of Excellence BioHealthHeinrichstraße 288010GrazAustria
| | - Silvia M. Glueck
- Institute of Chemistry, Department of Organic and Bioorganic ChemistryUniversity of GrazNAWI GrazBioTechMed GrazField of Excellence BioHealthHeinrichstraße 288010GrazAustria
| | - Wolfgang Kroutil
- Institute of Chemistry, Department of Organic and Bioorganic ChemistryUniversity of GrazNAWI GrazBioTechMed GrazField of Excellence BioHealthHeinrichstraße 288010GrazAustria
| |
Collapse
|
5
|
Bergamaschi E, Lunic D, McLean LA, Hohenadel M, Chen Y, Teskey CJ. Controlling Chemoselectivity of Catalytic Hydroboration with Light. Angew Chem Int Ed Engl 2022; 61:e202114482. [PMID: 34905284 PMCID: PMC9305532 DOI: 10.1002/anie.202114482] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Indexed: 11/29/2022]
Abstract
The ability to selectively react one functional group in the presence of another underpins efficient reaction sequences. Despite many designer catalytic systems being reported for hydroboration reactions, which allow introduction of a functional handle for cross-coupling or act as mild method for reducing polar functionality, these platforms rarely deal with more complex systems where multiple potentially reactive sites exist. Here we demonstrate, for the first time, the ability to use light to distinguish between ketones and carboxylic acids in more complex molecules. By taking advantage of different activation modes, a single catalytic system can be used for hydroboration, with the chemoselectivity dictated only by the presence or absence of visible light.
Collapse
Affiliation(s)
- Enrico Bergamaschi
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Danijela Lunic
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Liam A. McLean
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Melissa Hohenadel
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Yi‐Kai Chen
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | | |
Collapse
|
6
|
Bergamaschi E, Lunic D, McLean LA, Hohenadel M, Chen Y, Teskey CJ. Controlling Chemoselectivity of Catalytic Hydroboration with Light. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Enrico Bergamaschi
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Danijela Lunic
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Liam A. McLean
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Melissa Hohenadel
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Yi‐Kai Chen
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Christopher J. Teskey
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
7
|
Markushyna Y, Schüßlbauer CM, Ullrich T, Guldi DM, Antonietti M, Savateev A. Chromoselective Synthesis of Sulfonyl Chlorides and Sulfonamides with Potassium Poly(heptazine imide) Photocatalyst. Angew Chem Int Ed Engl 2021; 60:20543-20550. [PMID: 34223699 PMCID: PMC8457082 DOI: 10.1002/anie.202106183] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/22/2021] [Indexed: 12/20/2022]
Abstract
Among external stimuli used to promote a chemical reaction, photocatalysis possesses a unique one-light. Photons are traceless reagents that provide an exclusive opportunity to alter chemoselectivity of the photocatalytic reaction varying the color of incident light. This strategy may be implemented by using a sensitizer capable to activate a specific reaction pathway depending on the excitation light. Herein, we use potassium poly(heptazine imide) (K-PHI), a type of carbon nitride, to generate selectively three different products from S-arylthioacetates simply varying the excitation light and otherwise identical conditions. Namely, arylchlorides are produced under UV/purple, sulfonyl chlorides with blue/white, and diaryldisulfides at green to red light. A combination of the negatively charged polyanion, highly positive potential of the valence band, presence of intraband states, ability to sensitize singlet oxygen, and multi-electron transfer is shown to enable this chromoselective conversion of thioacetates.
Collapse
Affiliation(s)
- Yevheniia Markushyna
- Department of Colloid ChemistryMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Christoph M. Schüßlbauer
- Department of Chemistry and PharmacyInterdisciplinary Center for Molecular Materials(ICMM)Friedrich-Alexander University of Erlangen-NürnbergEgerlandstrasse 391058ErlangenGermany
| | - Tobias Ullrich
- Department of Chemistry and PharmacyInterdisciplinary Center for Molecular Materials(ICMM)Friedrich-Alexander University of Erlangen-NürnbergEgerlandstrasse 391058ErlangenGermany
| | - Dirk M. Guldi
- Department of Chemistry and PharmacyInterdisciplinary Center for Molecular Materials(ICMM)Friedrich-Alexander University of Erlangen-NürnbergEgerlandstrasse 391058ErlangenGermany
| | - Markus Antonietti
- Department of Colloid ChemistryMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Aleksandr Savateev
- Department of Colloid ChemistryMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| |
Collapse
|
8
|
Markushyna Y, Schüßlbauer CM, Ullrich T, Guldi DM, Antonietti M, Savateev A. Chromoselektive Synthese von Sulfonylchloriden und Sulfonamiden mit Kalium‐Poly(heptazinimid)‐Photokatalysator. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yevheniia Markushyna
- Abteilung für Kolloidchemie Max-Planck-Institut für Kolloid- und Grenzflächenforschung Am Mühlenberg 1 14476 Potsdam Deutschland
| | - Christoph M. Schüßlbauer
- Department Chemie und Pharmazie Interdisziplinäres Zentrum für Molekulare Materialien(ICMM) Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstrasse 3 91058 Erlangen Deutschland
| | - Tobias Ullrich
- Department Chemie und Pharmazie Interdisziplinäres Zentrum für Molekulare Materialien(ICMM) Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstrasse 3 91058 Erlangen Deutschland
| | - Dirk M. Guldi
- Department Chemie und Pharmazie Interdisziplinäres Zentrum für Molekulare Materialien(ICMM) Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstrasse 3 91058 Erlangen Deutschland
| | - Markus Antonietti
- Abteilung für Kolloidchemie Max-Planck-Institut für Kolloid- und Grenzflächenforschung Am Mühlenberg 1 14476 Potsdam Deutschland
| | - Aleksandr Savateev
- Abteilung für Kolloidchemie Max-Planck-Institut für Kolloid- und Grenzflächenforschung Am Mühlenberg 1 14476 Potsdam Deutschland
| |
Collapse
|