1
|
Wu Y, Wang R, Kim Y. Single-Atom Catalysts on Covalent Organic Frameworks for Energy Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:66874-66899. [PMID: 38329718 DOI: 10.1021/acsami.3c17662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Single-atom catalysts (SACs) have been investigated and applied to energy conversion devices. However, issues of metal agglomeration, low metal loading, and substrate stability have hindered realization of the SACs' full potential. Recently, covalent organic framework (COF)-based SACs have emerged as promising materials to enable highly efficient catalytic reactions. Here, we summarize the representative COF-based SACs and their wide application in clean energy devices and conversion reactions, such as hydrogen evolution reaction, carbon dioxide reduction reaction, nitrogen reduction reaction, oxygen reduction reaction, and oxygen evolution reaction. Based on their catalysis conditions, these reactions are categorized into photocatalyzed and electrocatalyzed reactions. We also summarize their design strategies, including heteroatom inclusion, donor-acceptor pairs, pore engineering, interface engineering, etc. Although COF-based SACs are promising, more efforts, such as linkage engineering, functional groups, ionization, multifunctional sites for cocatalyzed systems, etc., could improve them to be the ideal SAC materials. At the end, we provide our perspectives on where the field will proceed in the next 5 years.
Collapse
Affiliation(s)
- Yurong Wu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR, China
| | - Rui Wang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR, China
| | - Yoonseob Kim
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR, China
| |
Collapse
|
2
|
Qiao H, Zhao K, Wang S, Xu X, Chen S, Kong X, Yang L, Jiao M, Zhai L. Construction of Covalent Triazine Frameworks with Electronic Donor-Acceptor System for Efficient Photocatalytic C-H Hydroxylation of Imidazole[1,2-α]Pyridine Derivatives. Chemistry 2024; 30:e202402246. [PMID: 39143661 DOI: 10.1002/chem.202402246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 08/16/2024]
Abstract
Covalent triazine frameworks (CTFs) are promising heterogeneous photocatalyst candidates owing to their excellent stability, conjugacy, and tunability. In this study, a series of CTFs decorated with different substituents (H, MeO, and F) were synthesised and utilised as photocatalysts for C-H activation reactions. The corresponding optoelectronic properties could be precisely regulated by the electronic effects of different substituents in the nanopore channels of the CTFs; these CTFs were effective photocatalysts for C-H activation in organic synthesis due to their unique structures and optoelectronic properties. Methoxy-substituted CTF (MeO-CTF) exhibited extraordinary catalytic performance and reusability in C-H functionalization by constructing an electronic donor-acceptor system, achieving the highest yield in the photocatalytic C3-H hydroxylation of 2-phenylimidazole[1,2-α]pyridine. This strategy provides a new scaffold for the rational design of CTFs as efficient photocatalysts for organic synthesis.
Collapse
Affiliation(s)
- Huijie Qiao
- School of Materials and Chemical Engineering, Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Henan, 450007, P. R. China
| | - Kun Zhao
- School of Materials and Chemical Engineering, Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Henan, 450007, P. R. China
| | - Shixing Wang
- School of Materials and Chemical Engineering, Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Henan, 450007, P. R. China
| | - Xiaoxu Xu
- School of Materials and Chemical Engineering, Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Henan, 450007, P. R. China
| | - Sicheng Chen
- School of Materials and Chemical Engineering, Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Henan, 450007, P. R. China
| | - Xiangtao Kong
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China
| | - Liting Yang
- School of Materials and Chemical Engineering, Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Henan, 450007, P. R. China
| | - Mingli Jiao
- School of Materials and Chemical Engineering, Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Henan, 450007, P. R. China
| | - Lipeng Zhai
- School of Materials and Chemical Engineering, Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Henan, 450007, P. R. China
| |
Collapse
|
3
|
Hao Y, Bao B, Li R, Hou C, Li Y, Zhang Q, Li K, Wang H. Facilitating Charge Transfer via Ti-Knot Pathway in Electrochromic Three-Dimensional Metalated Covalent Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2024; 16:57571-57579. [PMID: 39387282 DOI: 10.1021/acsami.4c13012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Due to the ordered one-dimensional channel as well as accessible redox sites, two-dimensional covalent organic frameworks (2D COFs) have garnered extensive attention in the field of electrochromism. However, organic 2D frameworks impose limitations on charge transfer and the weak interlayer interactions in 2D COFs, adversely affecting the stability during switching processes. Herein, we introduced Ti knots to construct three-dimensional metalated covalent organic frameworks (3D MCOFs), denoted as Ti-DHTA-Py. The Ti knots not only serve as templates for organizing organic units into unique 3D topological structures in a controlled manner but also establish charge transfer pathways conducive to electron delocalization and transmission within the framework. As a result, the 3D Ti-DHTA-Py MCOFs electrode exhibited a reduced band gap and remarkable electrochromic (EC) performances: electrochemical cyclic stability of 93.6% retention after 500 cycles, switching times (2.5 s/0.5 s), and a high coloration efficiency (423 cm2 C-1). This research underscores the potential of 3D MCOFs as promising candidates for advancing EC technologies, surmounting the limitations associated with traditional 2D COFs.
Collapse
Affiliation(s)
- Yingying Hao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Bingwei Bao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Ran Li
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Yaogang Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Qinghong Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Kerui Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
4
|
Shi S, Liu W, Li Y, Lu S, Zhu H, Du M, Chen X, Duan F. Rational design of bimetallic sites in covalent organic frameworks for efficient photocatalytic oxidative coupling of amines. J Colloid Interface Sci 2024; 655:611-621. [PMID: 37956548 DOI: 10.1016/j.jcis.2023.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023]
Abstract
The conversion of organic compounds by photocatalysis under mild conditions is an environment-friendly alternative for organic transformations. In this work, the bimetallic covalent organic framework coordinated by Sr2+ and Fe2+ in the porphyrin centers with molar ratio of 2:1 (COF-Sr2Fe1) was synthesized through a two-step reaction. Under the synergistic regulation of Sr2+ and Fe2+, the separation of photogenerated charges and visible light absorption for COF-Sr2Fe1 were significantly promoted, and thus COF-Sr2Fe1 exhibited efficient photocatalytic performance towards benzylamine oxidative coupling reaction with a yield of 97 %, much higher than that of the nonmetallic covalent organic framework COF-366. Moreover, it was found that the Fe site displayed higher dehydrogenation ability and the Sr site displayed higher CN coupling ability through the density functional theory (DFT) calculations, thereby making the dehydrogenation and CN coupling steps more controllable for benzylamine oxidative coupling reaction by COF-Sr2Fe1. This work provides a strategy for designing efficient covalent organic frameworks photocatalysts, and helps to understand the oxidative coupling of amines more deeply.
Collapse
Affiliation(s)
- Songhu Shi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Wenhao Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Yujie Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Shuanglong Lu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Han Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Mingliang Du
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Xin Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Fang Duan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
5
|
Fan Y, Kang DW, Labalme S, Li J, Lin W. Enhanced Energy Transfer in A π-Conjugated Covalent Organic Framework Facilitates Excited-State Nickel Catalysis. Angew Chem Int Ed Engl 2023; 62:e202218908. [PMID: 36652347 DOI: 10.1002/anie.202218908] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/19/2023]
Abstract
Covalent organic frameworks (COFs) have received broad interest owing to their permanent porosity, high stability, and tunable functionalities. COFs with long-range π-conjugation and photosensitizing building blocks have been explored for sustainable photocatalysis. Herein, we report the first example of COF-based energy transfer Ni catalysis. A pyrene-based COF with sp2 carbon-conjugation was synthesized and used to coordinate NiII centers through bipyridine moieties. Under light irradiation, enhanced energy transfer in the COF facilitated the excitation of Ni centers to catalyze borylation and trifluoromethylation reactions of aryl halides. The COF showed two orders of magnitude higher efficiency in these reactions than its homogeneous control and could be recovered and reused without significant loss of catalytic activity.
Collapse
Affiliation(s)
- Yingjie Fan
- Department of Chemistry, The University of Chicago, Chicago, IL-60637, USA
| | - Dong Won Kang
- Department of Chemistry, The University of Chicago, Chicago, IL-60637, USA
| | - Steven Labalme
- Department of Chemistry, The University of Chicago, Chicago, IL-60637, USA
| | - Jinhong Li
- Department of Chemistry, The University of Chicago, Chicago, IL-60637, USA
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, IL-60637, USA
| |
Collapse
|
6
|
Yang C, Mao C, Deng Q, Yang Y, Zhou Y, Zhang Y. One-Pot Synthesis of Flavones Catalyzed by an Au-mediated Covalent Organic Framework. J Colloid Interface Sci 2023; 642:283-291. [PMID: 37004262 DOI: 10.1016/j.jcis.2023.03.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023]
Abstract
Covalent organic frameworks (COFs) are excellent candidates for rationally designed metal-coordinated catalysts due to their porous structures and adjustable organic building blocks. In this work, a two-dimensional (2D) COF with novel fxt topology was synthesized. The newly devised COF had been fully characterized by a range of spectroscopic and microscopic techniques. The COF was further metallized by the gold species to form a heterogeneous catalyst that enabled the one-pot synthesis of flavone and its derivatives. The Au@COF catalyst showed high catalytic activity and good recyclability. This work demonstrates the great potential of metallized COFs with unique well-defined pores in organic catalysis.
Collapse
|
7
|
Let S, Dam GK, Samanta P, Fajal S, Dutta S, Ghosh SK. Palladium-Anchored N-Heterocyclic Carbenes in a Porous Organic Polymer: A Heterogeneous Composite Catalyst for Eco-Friendly C–C Coupling. J Org Chem 2022; 87:16655-16664. [DOI: 10.1021/acs.joc.2c02325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Sumanta Let
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Gourab K. Dam
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Partha Samanta
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Sahel Fajal
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Subhajit Dutta
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Sujit K. Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
- Centre for Water Research, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
8
|
Krishnaraj C, Jena HS, Rawat KS, Schmidt J, Leus K, Van Speybroeck V, Van Der Voort P. Linker Engineering of 2D Imine Covalent Organic Frameworks for the Heterogeneous Palladium-Catalyzed Suzuki Coupling Reaction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50923-50931. [PMID: 36342965 DOI: 10.1021/acsami.2c14882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Covalent organic frameworks (COFs) are an emerging class of porous organic polymers that have been utilized as scaffolds for anchoring metal active species to act as heterogeneous catalysts. Though several examples of such COFs exist, a thorough experimental and computational analysis on such catalysts is limited. In this work, a series of two-dimensional (2D) imine COFs (TTA-DFB COF (N), TTA-TBD COF (N∧O), and TTA-DFP COF(N∧N)) were synthesized by using suitable building units to obtain three different coordination sites (N, N∧O, and N∧N). These were post-modified with Pd(II) to catalyze the Suzuki-Miyaura coupling reaction. Pd@TTA-DFB COF, where Pd(II) was coordinated to N sites, showed the fastest reactivity and lower stability. Pd@TTA-DFP COF showed highest stability but slowest reactivity. Pd@TTA-TBD COF was the best among the three with both high stability and fast reactivity. By combining both experimental and computational results, we conclude that the Pd(II) to Pd(0) reduction is a key step in the difference between the catalytic reactivities of the three COFs. This study demonstrates the importance of the building block approach to design COFs for efficient heterogeneous catalysis and to understand the fate of the reaction profile.
Collapse
Affiliation(s)
- Chidharth Krishnaraj
- COMOC-Center for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Himanshu Sekhar Jena
- COMOC-Center for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Kuber Singh Rawat
- Center for Molecular Modeling (CMM), Ghent University, B-9052 Ghent, Zwijnaarde, Belgium
| | - Johannes Schmidt
- Department of Chemistry/Functional Materials, Technische Universität Berlin, 10623 Berlin, Germany
| | - Karen Leus
- COMOC-Center for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Ghent University, 9000 Ghent, Belgium
| | | | - Pascal Van Der Voort
- COMOC-Center for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
9
|
Traxler M, Gisbertz S, Pachfule P, Schmidt J, Roeser J, Reischauer S, Rabeah J, Pieber B, Thomas A. Acridine-Functionalized Covalent Organic Frameworks (COFs) as Photocatalysts for Metallaphotocatalytic C-N Cross-Coupling. Angew Chem Int Ed Engl 2022; 61:e202117738. [PMID: 35188714 PMCID: PMC9400916 DOI: 10.1002/anie.202117738] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Indexed: 12/17/2022]
Abstract
Covalent organic frameworks (COFs) are structurally tuneable, porous and crystalline polymers constructed through the covalent attachment of small organic building blocks as elementary units. Using the myriad of such building blocks, a broad spectrum of functionalities has been applied for COF syntheses for broad applications, including heterogeneous catalysis. Herein, we report the synthesis of a new family of porous and crystalline COFs using a novel acridine linker and benzene-1,3,5-tricarbaldehyde derivatives bearing a variable number of hydroxy groups. With the broad absorption in the visible light region, the COFs were applied as photocatalysts in metallaphotocatalytic C-N cross-coupling. The fully β-ketoenamine linked COF showed the highest activity, due to the increased charge separation upon irradiation. The COF showed good to excellent yields for several aryl bromides, good recyclability and even catalyzed the organic transformation in presence of green light as energy source.
Collapse
Affiliation(s)
- Michael Traxler
- Department of Chemistry/Functional MaterialsTechnische Universität BerlinHardenbergstraße 4010623BerlinGermany
| | - Sebastian Gisbertz
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Department of Chemistry and BiochemistryFreie Universität BerlinTakustraße 314195BerlinGermany
| | - Pradip Pachfule
- Department of Chemistry/Functional MaterialsTechnische Universität BerlinHardenbergstraße 4010623BerlinGermany
- Department of Chemical, Biological & Macro-Molecular SciencesS. N. Bose National Centre for Basic SciencesKolkata700106India
| | - Johannes Schmidt
- Department of Chemistry/Functional MaterialsTechnische Universität BerlinHardenbergstraße 4010623BerlinGermany
| | - Jérôme Roeser
- Department of Chemistry/Functional MaterialsTechnische Universität BerlinHardenbergstraße 4010623BerlinGermany
| | - Susanne Reischauer
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Department of Chemistry and BiochemistryFreie Universität BerlinTakustraße 314195BerlinGermany
| | - Jabor Rabeah
- Leibniz Institute for Catalysis (LIKAT Rostock)Universität Rostock18059RostockGermany
| | - Bartholomäus Pieber
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Arne Thomas
- Department of Chemistry/Functional MaterialsTechnische Universität BerlinHardenbergstraße 4010623BerlinGermany
| |
Collapse
|
10
|
Qiao H, Yang L, Yang X, Wang J, Chen Y, Zhang L, Sun W, Zhai L, Mi L. Design of Photoactive Covalent Organic Frameworks as Heterogeneous Catalyst for Preparation of Thiophosphinates from Phosphine Oxides and Thiols. Chemistry 2022; 28:e202200600. [DOI: 10.1002/chem.202200600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Indexed: 12/25/2022]
Affiliation(s)
- Huijie Qiao
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Henan 450007 P. R. China
- School of Materials and Chemical Engineering Zhongyuan University of Technology Henan 450007 P. R. China
| | - Liting Yang
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Henan 450007 P. R. China
- School of Materials and Chemical Engineering Zhongyuan University of Technology Henan 450007 P. R. China
| | - Xiubei Yang
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Henan 450007 P. R. China
- School of Materials and Chemical Engineering Zhongyuan University of Technology Henan 450007 P. R. China
| | - Jialin Wang
- School of Materials and Chemical Engineering Zhongyuan University of Technology Henan 450007 P. R. China
| | - Ya Chen
- School of Materials and Chemical Engineering Zhongyuan University of Technology Henan 450007 P. R. China
| | - Lin Zhang
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Henan 450007 P. R. China
| | - Wuxuan Sun
- School of Materials and Chemical Engineering Zhongyuan University of Technology Henan 450007 P. R. China
| | - Lipeng Zhai
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Henan 450007 P. R. China
| | - Liwei Mi
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Henan 450007 P. R. China
| |
Collapse
|
11
|
Traxler M, Gisbertz S, Pachfule P, Schmidt J, Roeser J, Reischauer S, Rabeah J, Pieber B, Thomas A. Acridine‐Functionalized Covalent Organic Frameworks (COFs) as Photocatalysts for Metallaphotocatalytic C−N Cross‐Coupling. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Michael Traxler
- Department of Chemistry/Functional Materials Technische Universität Berlin Hardenbergstraße 40 10623 Berlin Germany
| | - Sebastian Gisbertz
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
- Department of Chemistry and Biochemistry Freie Universität Berlin Takustraße 3 14195 Berlin Germany
| | - Pradip Pachfule
- Department of Chemistry/Functional Materials Technische Universität Berlin Hardenbergstraße 40 10623 Berlin Germany
- Department of Chemical, Biological & Macro-Molecular Sciences S. N. Bose National Centre for Basic Sciences Kolkata 700106 India
| | - Johannes Schmidt
- Department of Chemistry/Functional Materials Technische Universität Berlin Hardenbergstraße 40 10623 Berlin Germany
| | - Jérôme Roeser
- Department of Chemistry/Functional Materials Technische Universität Berlin Hardenbergstraße 40 10623 Berlin Germany
| | - Susanne Reischauer
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
- Department of Chemistry and Biochemistry Freie Universität Berlin Takustraße 3 14195 Berlin Germany
| | - Jabor Rabeah
- Leibniz Institute for Catalysis (LIKAT Rostock) Universität Rostock 18059 Rostock Germany
| | - Bartholomäus Pieber
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Arne Thomas
- Department of Chemistry/Functional Materials Technische Universität Berlin Hardenbergstraße 40 10623 Berlin Germany
| |
Collapse
|
12
|
Li WJ, Wang XQ, Zhang DY, Hu YX, Xu WT, Xu L, Wang W, Yang HB. Artificial Light-Harvesting Systems Based on AIEgen-branched Rotaxane Dendrimers for Efficient Photocatalysis. Angew Chem Int Ed Engl 2021; 60:18761-18768. [PMID: 34125487 DOI: 10.1002/anie.202106035] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Indexed: 12/20/2022]
Abstract
Aiming at the construction of novel platform for efficient light harvesting, the precise synthesis of a new family of AIEgen-branched rotaxane dendrimers was successful realized from an AIEgen-functionalized [2]rotaxane through a controllable divergent approach. In the resultant AIE macromolecules, up to twenty-one AIEgens located at the tails of each branches, thus making them the first successful example of AIEgen-branched dendrimers. Attributed to the solvent-induced switching feature of the rotaxane branches, the integrated rotaxane dendrimers displayed interesting dynamic feature upon the aggregation-induced emission (AIE) process. Moreover, novel artificial light-harvesting systems were further constructed based on these AIEgen-branched rotaxane dendrimers, which revealed impressive generation-dependent photocatalytic performances for both photooxidation reaction and aerobic cross-dehydrogenative coupling (CDC) reaction.
Collapse
Affiliation(s)
- Wei-Jian Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Dan-Yang Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Yi-Xiong Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Wei-Tao Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| |
Collapse
|
13
|
Li W, Wang X, Zhang D, Hu Y, Xu W, Xu L, Wang W, Yang H. Artificial Light‐Harvesting Systems Based on AIEgen‐branched Rotaxane Dendrimers for Efficient Photocatalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Wei‐Jian Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Xu‐Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Dan‐Yang Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Yi‐Xiong Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Wei‐Tao Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Hai‐Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| |
Collapse
|