1
|
Fu W, Qi M, Rong Y, Lin C, Guo W, Su B. Remote On-Paper Electrochemiluminescence-Based High-Safety and Multilevel Information Encryption. Angew Chem Int Ed Engl 2025; 64:e202420184. [PMID: 39659206 DOI: 10.1002/anie.202420184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/27/2024] [Accepted: 12/11/2024] [Indexed: 12/12/2024]
Abstract
The escalating needs in information protection underscore the urgency of developing advanced encryption strategies. Herein we report a novel chemical approach that enables information encryption by on-paper electrochemiluminescence (ECL). Dendritic porous silica nanospheres modified with polyetherimide and bovine serum albumin were prepared as the chemical ink to write the secret message on a paper. Attaching the paper to an electrode, immersing it in a solution containing tris(2,2'-bipyridyl)ruthenium (Ru(bpy)3 2+) and then applying a suitable voltage, a remote "catalytic route" electrochemical reaction produces ECL that functions as the key to decrypt and visualize the message by imaging. In addition, proteins can be also used as the biological ink to write the secret message, which is then decrypted by a combined use of immunochemistry and ECL imaging as two keys. We believe the ECL-based strategy holds great promise in high-safety and multilevel information encryption, as it is protected not only by encoding, like conventional invisible inks, but also by the unique ECL decoding approach.
Collapse
Affiliation(s)
- Wenxuan Fu
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Min Qi
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Yidan Rong
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Chukai Lin
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Weiliang Guo
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Bin Su
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| |
Collapse
|
2
|
Huang X, Li B, Lu Y, Liu Y, Wang S, Sojic N, Jiang D, Liu B. Direct Visualization of Nanoconfinement Effect on Nanoreactor via Electrochemiluminescence Microscopy. Angew Chem Int Ed Engl 2023; 62:e202215078. [PMID: 36478505 DOI: 10.1002/anie.202215078] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/21/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
Nanoconfinement in mesoporous nanoarchitectures could dramatically change molecular transport and reaction kinetics during electrochemical process. A molecular-level understanding of nanoconfinement and mass transport is critical for the applications, but a proper route to study it is lacking. Herein, we develop a single nanoreactor electrochemiluminescence (SNECL) microscopy based on Ru(bpy)3 2+ -loaded mesoporous silica nanoparticle to directly visualize in situ nanoconfinement-enhanced electrochemical reactions at the single molecule level. Meanwhile, mass transport capability of single nanoreactor, reflected as long decay time and recovery ability, is monitored and simulated with a high spatial resolution. The nanoconfinement effects in our system also enable imaging single proteins on cellular membrane. Our SNECL approach may pave the way to decipher the nanoconfinement effects during electrochemical process, and build bridges between mesoporous nanoarchitectures and potential electrochemical applications.
Collapse
Affiliation(s)
- Xuedong Huang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Binxiao Li
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Yanwei Lu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Yixin Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Shurong Wang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Neso Sojic
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, 33607, Pessac, France
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
3
|
Zhang P, Zhou X, Jiang J, Kolay J, Wang R, Ma G, Wan Z, Wang S. In Situ Analysis of Membrane-Protein Binding Kinetics and Cell-Surface Adhesion Using Plasmonic Scattering Microscopy. Angew Chem Int Ed Engl 2022; 61:e202209469. [PMID: 35922374 PMCID: PMC9561081 DOI: 10.1002/anie.202209469] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 11/09/2022]
Abstract
Surface plasmon resonance microscopy (SPRM) is an excellent platform for in situ studying cell-substrate interactions. However, SPRM suffers from poor spatial resolution and small field of view. Herein, we demonstrate plasmonic scattering microscopy (PSM) by adding a dry objective on a popular prism-coupled surface plasmon resonance (SPR) system. PSM not only retains SPRM's high sensitivity and real-time analysis capability, but also provides ≈7 times higher spatial resolution and ≈70 times larger field of view than the typical SPRM, thus providing more details about membrane protein response to ligand binding on over 100 cells simultaneously. In addition, PSM allows quantifying the target movements in the axial direction with a high spatial resolution, thus allowing mapping adhesion spring constants for quantitatively describing the mechanical properties of the cell-substrate contacts. This work may offer a powerful and cost-effective strategy for upgrading current SPR products.
Collapse
Affiliation(s)
- Pengfei Zhang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ 85287, USA
| | - Xinyu Zhou
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ 85287, USA
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Jiapei Jiang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ 85287, USA
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Jayeeta Kolay
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ 85287, USA
| | - Rui Wang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ 85287, USA
| | - Guangzhong Ma
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ 85287, USA
| | - Zijian Wan
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ 85287, USA
- School of Electrical, Energy and Computer Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Shaopeng Wang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ 85287, USA
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
4
|
Zhang P, Zhou X, Jiang J, Kolay J, Wang R, Ma G, Wan Z, Wang S. In Situ Analysis of Membrane‐Protein Binding Kinetics and Cell–Surface Adhesion Using Plasmonic Scattering Microscopy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pengfei Zhang
- Arizona State University Biodesign Center for Bioelectronics and Biosensors 1001 S. McAllister Ave. 85287 Tempe UNITED STATES
| | - Xinyu Zhou
- Arizona State University Biodesign Institute Biodesign Center for Bioelectronics and Biosensors UNITED STATES
| | - Jiapei Jiang
- Arizona State University Biodesign Institute Biodesign Center for Bioelectronics and Biosensors UNITED STATES
| | - Jayeeta Kolay
- Arizona State University Biodesign Institute Biodesign Center for Bioelectronics and Biosensors UNITED STATES
| | - Rui Wang
- Arizona State University Biodesign Institute Biodesign Center for Bioelectronics and Biosensors UNITED STATES
| | - Guangzhong Ma
- Arizona State University Biodesign Institute Biodesign Center for Bioelectronics and Biosensors UNITED STATES
| | - Zijian Wan
- Arizona State University Biodesign Institute Biodesign Center for Bioelectronics and Biosensors UNITED STATES
| | - Shaopeng Wang
- Arizona State University Biodesign Institute Center for Bioelectronics and Biosensors 1001 S McAllister AvenuePO BOX 875801 85248 Tempe UNITED STATES
| |
Collapse
|
5
|
Chen MM, Xu CH, Zhao W, Chen HY, Xu JJ. Single Cell Imaging of Electrochemiluminescence-Driven Photodynamic Therapy. Angew Chem Int Ed Engl 2022; 61:e202117401. [PMID: 35165987 DOI: 10.1002/anie.202117401] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Indexed: 01/06/2023]
Abstract
We report a photodynamic therapy driven by electrochemiluminescence (ECL). The luminescence generated by Ru(bpy)3 2+ and co-reactant tripropylamine (TPA) pair acts as both optical readout for ECL imaging, and light source for the excitation of photosensitizer to produce reactive oxygen species (ROS) in photodynamic therapy (PDT) system. The ECL-driven PDT (ECL-PDT) relies on the effective energy transfer from ECL emission to photosensitizer chlorin e6 (Ce6), which sensitizes the surrounding O2 into ROS. The dynamic process of gradual morphological changes, the variation of cell-matrix adhesions, as well as the increase of cell membrane permeability in the process of ECL-PDT were monitored under ECL microscopy (ECLM) with good spatiotemporal resolution. Combining real-time imaging with ECL-PDT, this new strategy provides not only new insights into dynamic cellular processes, but also promising potential of ECL in clinical applications.
Collapse
Affiliation(s)
- Ming-Ming Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Cong-Hui Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.,Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.,Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
6
|
Chen M, Xu C, Zhao W, Chen H, Xu J. Single Cell Imaging of Electrochemiluminescence‐Driven Photodynamic Therapy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ming‐Ming Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Cong‐Hui Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
- Institute of Nanochemistry and Nanobiology School of Environmental and Chemical Engineering Shanghai University Shanghai 200444 China
| | - Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
- Institute of Nanochemistry and Nanobiology School of Environmental and Chemical Engineering Shanghai University Shanghai 200444 China
| | - Hong‐Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Jing‐Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
7
|
Ma Y, Colin C, Descamps J, Arbault S, Sojic N. Shadow Electrochemiluminescence Microscopy of Single Mitochondria. Angew Chem Int Ed Engl 2021; 60:18742-18749. [PMID: 34115447 DOI: 10.1002/anie.202105867] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Indexed: 12/20/2022]
Abstract
Mitochondria are the subcellular bioenergetic organelles. The analysis of their morphology and topology is essential to provide useful information on their activity and metabolism. Herein, we report a label-free shadow electrochemiluminescence (ECL) microscopy based on the spatial confinement of the ECL-emitting reactive layer to image single living mitochondria deposited on the electrode surface. The ECL mechanism of the freely-diffusing [Ru(bpy)3 ]2+ dye with the sacrificial tri-n-propylamine coreactant restrains the light-emitting region to a micrometric thickness allowing to visualize individual mitochondria with a remarkable sharp negative optical contrast. The imaging approach named "shadow ECL" (SECL) reflects the negative imprint of the local diffusional hindrance of the ECL reagents by each mitochondrion. The statistical analysis of the colocalization of the shadow ECL spots with the functional mitochondria revealed by classical fluorescent biomarkers, MitoTracker Deep Red and the endogenous intramitochondrial NADH, validates the reported methodology. The versatility and extreme sensitivity of the approach are further demonstrated by visualizing single mitochondria, which remain hardly detectable with the usual biomarkers. Finally, by alleviating problems of photobleaching and phototoxicity associated with conventional microscopy methods, SECL microscopy should find promising applications in the imaging of subcellular structures.
Collapse
Affiliation(s)
- Yumeng Ma
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, 33607, Pessac, France
| | - Camille Colin
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, 33607, Pessac, France
| | - Julie Descamps
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, 33607, Pessac, France
| | - Stéphane Arbault
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, 33607, Pessac, France.,Present address: Univ. Bordeaux, CNRS, Bordeaux INP, CBMN UMR 5248, Allée Geoffroy Saint Hilaire, 33600, Pessac, France
| | - Neso Sojic
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, 33607, Pessac, France
| |
Collapse
|
8
|
Ma Y, Colin C, Descamps J, Arbault S, Sojic N. Shadow Electrochemiluminescence Microscopy of Single Mitochondria. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yumeng Ma
- University of Bordeaux Bordeaux INP ISM UMR CNRS 5255 33607 Pessac France
| | - Camille Colin
- University of Bordeaux Bordeaux INP ISM UMR CNRS 5255 33607 Pessac France
| | - Julie Descamps
- University of Bordeaux Bordeaux INP ISM UMR CNRS 5255 33607 Pessac France
| | - Stéphane Arbault
- University of Bordeaux Bordeaux INP ISM UMR CNRS 5255 33607 Pessac France
- Present address: Univ. Bordeaux CNRS Bordeaux INP CBMN UMR 5248 Allée Geoffroy Saint Hilaire 33600 Pessac France
| | - Neso Sojic
- University of Bordeaux Bordeaux INP ISM UMR CNRS 5255 33607 Pessac France
| |
Collapse
|