1
|
Promhuad P, Sawatmongkhon B, Theinnoi K, Wongchang T, Chollacoop N, Sukjit E, Tunmee S, Tsolakis A. Effect of Metal Oxides (CeO 2, ZnO, TiO 2, and Al 2O 3) as the Support for Silver-Supported Catalysts on the Catalytic Oxidation of Diesel Particulate Matter. ACS OMEGA 2024; 9:19282-19294. [PMID: 38708233 PMCID: PMC11064198 DOI: 10.1021/acsomega.4c00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 05/07/2024]
Abstract
This work presented the influence of metal oxides as the support for silver-supported catalysts on the catalytic oxidation of diesel particulate matter (DPM). The supports selected to be used in this work were CeO2 (reducible), ZnO (semiconductor), TiO2 (reducible and semiconductor), and Al2O3 (acidic). The properties of the synthesized catalysts were investigated using XRD, TEM, H2-TPR, and XPS techniques. The DPM oxidation activity was performed using the TGA method. Different states of silver (e.g., Ag° and Ag+) were formed with different concentrations and affected the performance of the DPM oxidation. Ag2O and lattice oxygen, which were mainly generated by Ag/ZnO and Ag/CeO2, were responsible for combusting the VOCs. The metallic silver (Ag°) formed primarily on Ag/Al2O3 and Ag/TiO2 was the main component promoting soot combustion. Contact between the catalyst and DPM had a minor effect on VOC oxidation but significantly affected the soot oxidation activity.
Collapse
Affiliation(s)
- Punya Promhuad
- College
of Industrial Technology, King Mongkut’s
University of Technology North Bangkok, 1518 Pracharat 1 Road, Wongsawang, Bangsue, Bangkok 10800, Thailand
| | - Boonlue Sawatmongkhon
- College
of Industrial Technology, King Mongkut’s
University of Technology North Bangkok, 1518 Pracharat 1 Road, Wongsawang, Bangsue, Bangkok 10800, Thailand
- Research
Centre for Combustion Technology and Alternative Energy (CTAE), Science
and Technology Research Institute, King
Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Kampanart Theinnoi
- College
of Industrial Technology, King Mongkut’s
University of Technology North Bangkok, 1518 Pracharat 1 Road, Wongsawang, Bangsue, Bangkok 10800, Thailand
- Research
Centre for Combustion Technology and Alternative Energy (CTAE), Science
and Technology Research Institute, King
Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Thawatchai Wongchang
- Research
Centre for Combustion Technology and Alternative Energy (CTAE), Science
and Technology Research Institute, King
Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
- Department
of Mechanical and Automotive Engineering Technology, Faculty of Engineering
and Technology, King Mongkut’s University
of Technology North Bangkok (Rayong Campus), Rayong 21120, Thailand
| | - Nuwong Chollacoop
- Renewable
Energy and Energy Efficiency Research Team, National Energy Technology Center (ENTEC), 114 Thailand Science Park, Klong Luang, Pathumthani 12120, Thailand
| | - Ekarong Sukjit
- School
of Mechanical Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Sarayut Tunmee
- Synchrotron
Light Research Institute, 111 University Avenue, Muang District, Nakhon
Ratchasima 30000, Thailand
| | - Athanasios Tsolakis
- School
of Engineering, Mechanical and Manufacturing Engineering, University of Birmingham, Birmingham B15 2TT, U.K.
| |
Collapse
|
2
|
Pu T, Zhang W, Zhu M. Engineering Heterogeneous Catalysis with Strong Metal-Support Interactions: Characterization, Theory and Manipulation. Angew Chem Int Ed Engl 2023; 62:e202212278. [PMID: 36287199 DOI: 10.1002/anie.202212278] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Indexed: 11/07/2022]
Abstract
Strong metal-support interactions (SMSI) represent a classic yet fast-growing area in catalysis research. The SMSI phenomenon results in the encapsulation and stabilization of metal nanoparticles (NPs) with the support material that significantly impacts the catalytic performance through regulation of the interfacial interactions. Engineering SMSI provides a promising approach to steer catalytic performance in various chemical processes, which serves as an effective tool to tackle energy and environmental challenges. Our Minireview covers characterization, theory, catalytic activity, dependence on the catalytic structure and inducing environment of SMSI phenomena. By providing an overview and outlook on the cutting-edge techniques in this multidisciplinary research field, we not only want to provide insights into the further exploitation of SMSI in catalysis, but we also hope to inspire rational designs and characterization in the broad field of material science and physical chemistry.
Collapse
Affiliation(s)
- Tiancheng Pu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Wenhao Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Minghui Zhu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
3
|
Zhu K, Zhu Q, Jiang M, Zhang Y, Shao Z, Geng Z, Wang X, Zeng H, Wu X, Zhang W, Huang K, Feng S. Modulating Ti
t
2g
Orbital Occupancy in a Cu/TiO
2
Composite for Selective Photocatalytic CO
2
Reduction to CO. Angew Chem Int Ed Engl 2022; 61:e202207600. [DOI: 10.1002/anie.202207600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Kainan Zhu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials College of Chemistry Jilin University Changchun 130012 China
| | - Qian Zhu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials College of Chemistry Jilin University Changchun 130012 China
| | - Mengpei Jiang
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences 72 Wenhua RD Shenyang 110016 China
| | - Yaowen Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials College of Chemistry Jilin University Changchun 130012 China
| | - Zhiyu Shao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials College of Chemistry Jilin University Changchun 130012 China
| | - Zhibin Geng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials College of Chemistry Jilin University Changchun 130012 China
| | - Xiyang Wang
- Department of Mechanical and Mechatronics Engineering Waterloo Institute for Nanotechnology Materials Interface Foundry University of Waterloo Waterloo Ontario N2L3G1 Canada
| | - Hui Zeng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials College of Chemistry Jilin University Changchun 130012 China
| | - Xiaofeng Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials College of Chemistry Jilin University Changchun 130012 China
| | - Wei Zhang
- Electron Microscopy Center and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials Jilin University Changchun 130012 China
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials College of Chemistry Jilin University Changchun 130012 China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials College of Chemistry Jilin University Changchun 130012 China
| |
Collapse
|
4
|
Tang M, Wang Y. The Significant Role of the Atomic Surface Structure of Support in Strong Metal‐Support Interaction. Chemistry 2022; 28:e202104519. [DOI: 10.1002/chem.202104519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Min Tang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
- Materials Chemistry and Catalysis Debye Institute for Nanomaterials Science Utrecht University 3584 CG Utrecht The Netherlands
| | - Yong Wang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| |
Collapse
|
5
|
Zhu K, Zhu Q, Jiang M, Zhang Y, Shao Z, Geng Z, Wang X, Zeng H, Wu X, Zhang W, Huang K, Feng S. Modulating Ti t2g Orbit‐occupancy in Cu/TiO2 Composite for Selective Photocatalytic CO2 Reduction to CO. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kainan Zhu
- Jilin University college of chemistry CHINA
| | - Qian Zhu
- Jilin University college of chemistry CHINA
| | - Mengpei Jiang
- Chinese Academy of Sciences Shenyang National Laboratory for Materials Science Institute of Metal Research CHINA
| | | | - Zhiyu Shao
- Jilin University College of Chemistry CHINA
| | | | - Xiyang Wang
- University of Waterloo Department of Mechanical and Mechatronics Engineering Waterloo Institute for Nanotechnology CANADA
| | - Hui Zeng
- Jilin University College of Chemistry CHINA
| | | | - Wei Zhang
- Jilin University Electron Microscopy Center and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials CHINA
| | - Keke Huang
- Jilin University College of Chemistry Qianjin Street 2699 130012 Changchun CHINA
| | | |
Collapse
|
6
|
Tang M, Li S, Chen S, Ou Y, Hiroaki M, Yuan W, Zhu B, Yang H, Gao Y, Zhang Z, Wang Y. Facet‐Dependent Oxidative Strong Metal‐Support Interactions of Palladium–TiO
2
Determined by In Situ Transmission Electron Microscopy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Min Tang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
- Materials Chemistry and Catalysis Debye Institute for Nanomaterials Science Utrecht University 3584 CG Utrecht The Netherlands
| | - Songda Li
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Shiyuan Chen
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Yang Ou
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | | | - Wentao Yuan
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Beien Zhu
- Interdisciplinary Research Center, Zhangjiang Laboratory Shanghai Advanced Research Institute, Chinese Academy of Sciences Shanghai 201210 China
| | - Hangsheng Yang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Yi Gao
- Interdisciplinary Research Center, Zhangjiang Laboratory Shanghai Advanced Research Institute, Chinese Academy of Sciences Shanghai 201210 China
| | - Ze Zhang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Yong Wang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| |
Collapse
|
7
|
Tang M, Li S, Chen S, Ou Y, Hiroaki M, Yuan W, Zhu B, Yang H, Gao Y, Zhang Z, Wang Y. Facet-Dependent Oxidative Strong Metal-Support Interactions of Palladium-TiO 2 Determined by In Situ Transmission Electron Microscopy. Angew Chem Int Ed Engl 2021; 60:22339-22344. [PMID: 34352928 DOI: 10.1002/anie.202106805] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Indexed: 11/06/2022]
Abstract
The strong metal-support interaction (SMSI) is widely used in supported metal catalysts and extensive studies have been performed to understand it. Although considerable progress has been achieved, the surface structure of the support, as an important influencing factor, is usually ignored. We report a facet-dependent SMSI of Pd-TiO2 in oxygen by using in situ atmospheric pressure TEM. Pd NPs supported on TiO2 (101) and (100) surfaces showed encapsulation. In contrast, no such cover layer was observed in Pd-TiO2 (001) catalyst under the same conditions. This facet-dependent SMSI, which originates from the variable surface structure of the support, was demonstrated in a probe reaction of methane combustion catalyzed by Pd-TiO2 . Our discovery of the oxidative facet-dependent SMSI gives direct evidence of the important role of the support surface structure in SMSI and provides a new way to tune the interaction between metal NPs and the support as well as catalytic activity.
Collapse
Affiliation(s)
- Min Tang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China.,Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Songda Li
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Shiyuan Chen
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yang Ou
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | | | - Wentao Yuan
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Beien Zhu
- Interdisciplinary Research Center, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese, Academy of Sciences, Shanghai, 201210, China
| | - Hangsheng Yang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yi Gao
- Interdisciplinary Research Center, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese, Academy of Sciences, Shanghai, 201210, China
| | - Ze Zhang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yong Wang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|