1
|
Leitner D, Neururer FR, Hohloch S. Synthesis and electrochemical properties of molybdenum nitrido complexes supported by redox-active NHC and MIC ligands. Dalton Trans 2025; 54:582-594. [PMID: 39556080 PMCID: PMC11572837 DOI: 10.1039/d4dt02405b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024]
Abstract
We report the synthesis of a series of molybdenum nitrido complexes supported by bis-phenolate N-heterocyclic and mesoionic carbenes (NHC & MIC). The reaction between MoN(OtBu)3 and the corresponding azolium salts [H3L1]Cl and [H3L2]Cl (with L1 = bis-phenolate triazolylidene and L2 = bis-phenolate benzimidazolylidene) gives clean access to the corresponding NHC/MIC complexes 1-Cl and 2-Cl. Electrochemical investigations of these complexes showed that they can be reversibly reduced at potentials of -1.13 and -1.01 V vs. Fc/[Fc]+ and the reduced complexes [1-Cl]- and [2-Cl]- can be cleanly isolated after chemical reduction with one equivalent of decamethylcobaltocene. Exchange of the halide atoms is furthermore reported to give a series of nitrido complexes supported by tert-butanolate (1-OtBu and 2-OtBu), perfluoro-tert-butanolate (1-OtBuF9 and 2-OtBuF9), tritylate (1-OCPh3 and 2-OCPh3), mesitolate (1-OMes and 2-OMes), thio-tert-butanolate (1-StBu), thiotritylate (1-SCPh3 and 2-SCPh3) and thiomesitolate complexes (1-SMes). The electrochemical properties of all complexes were evaluated and compared. All isolated complexes were characterized by multinuclear and multidimensional NMR spectroscopy and (if applicable) by EPR spectroscopy. Furthermore, the reactivity of 1-Cl and 2-Cl in the presence of protons and decamethylcobaltocene was investigated, which shows facile extrusion of ammonia, yielding diamagnetic bis-molybdenum(III) complexes 3 and 4.
Collapse
Affiliation(s)
- Daniel Leitner
- Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.
| | - Florian R Neururer
- Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.
| | - Stephan Hohloch
- Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.
| |
Collapse
|
2
|
Ashida Y, Egi A, Arashiba K, Tanaka H, Mitsumoto T, Kuriyama S, Yoshizawa K, Nishibayashi Y. Catalytic Reduction of Dinitrogen into Ammonia and Hydrazine by Using Chromium Complexes Bearing PCP-Type Pincer Ligands. Chemistry 2022; 28:e202200557. [PMID: 35199891 DOI: 10.1002/chem.202200557] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Indexed: 11/10/2022]
Abstract
A series of chromium-halide, -nitride, and -dinitrogen complexes bearing carbene- and phosphine-based PCP-type pincer ligands has been newly prepared, and some of them are found to work as effective catalysts to reduce dinitrogen under atmospheric pressure, whereby up to 11.60 equiv. of ammonia and 2.52 equiv. of hydrazine (16.6 equiv. of fixed N atom) are produced based on the chromium atom. To the best of our knowledge, this is the first successful example of chromium-catalyzed conversion of dinitrogen to ammonia and hydrazine under mild reaction conditions.
Collapse
Affiliation(s)
- Yuya Ashida
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Akihito Egi
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Kazuya Arashiba
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hiromasa Tanaka
- School of Liberal Arts and Sciences, Daido University, Minami-ku, Nagoya, Japan
| | - Taichi Mitsumoto
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Shogo Kuriyama
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Yoshiaki Nishibayashi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
3
|
Egi A, Tanaka H, Yoshizawa K. Theoretical Views on Catalytic Reaction Pathways for Nitrogen Fixation by Dinitrogen-Bridging Dimolybdenum Complexes. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.1041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Akihito Egi
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University
| | | | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University
| |
Collapse
|