Rall JM, Schorpp M, Keilwerth M, Mayländer M, Friedmann C, Daub M, Richert S, Meyer K, Krossing I. Synthesis and Characterization of Stable Iron Pentacarbonyl Radical Cation Salts.
Angew Chem Int Ed Engl 2022;
61:e202204080. [PMID:
35543697 PMCID:
PMC9401057 DOI:
10.1002/anie.202204080]
[Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Indexed: 11/09/2022]
Abstract
The open-shell iron pentacarbonyl cation [Fe(CO)5 ].+ was isolated by deelectronation, i.e., the single-electron oxidation of the parent neutral Fe(CO)5 using [phenazineF ].+ as the [Al(ORF )4 ]- and [F-{Al(ORF )3 }2 ]- salt (RF =C(CF3 )3 ; phenazineF =perfluoro-5,10-bis(perfluorophenyl)-5,10-dihydrophenazine). [Fe(CO)5 ].+ [Al(ORF )4 ]- was fully characterized (scXRD analysis, IR, NMR, EPR, 57 Fe spectroscopy, CV and SQUID magnetization study) and, apart from being a compound of fundamental interest, may serve as a precursor for low-valent iron coordination chemistry.
Collapse