1
|
Vafaeezadeh M, Thiel WR. Task-Specific Janus Materials in Heterogeneous Catalysis. Angew Chem Int Ed Engl 2022; 61:e202206403. [PMID: 35670287 PMCID: PMC9804448 DOI: 10.1002/anie.202206403] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Indexed: 01/05/2023]
Abstract
Janus materials are anisotropic nano- and microarchitectures with two different faces consisting of distinguishable or opposite physicochemical properties. In parallel with the discovery of new methods for the fabrication of these materials, decisive progress has been made in their application, for example, in biological science, catalysis, pharmaceuticals, and, more recently, in battery technology. This Minireview systematically covers recent and significant achievements in the application of task-specific Janus nanomaterials as heterogeneous catalysts in various types of chemical reactions, including reduction, oxidative desulfurization and dye degradation, asymmetric catalysis, biomass transformation, cascade reactions, oxidation, transition-metal-catalyzed cross-coupling reactions, electro- and photocatalytic reactions, as well as gas-phase reactions. Finally, an outlook on possible future applications is given.
Collapse
Affiliation(s)
- Majid Vafaeezadeh
- Fachbereich ChemieTechnische Universität KaiserslauternErwin-Schrödinger-Strasse 5467663KaiserslauternGermany
| | - Werner R. Thiel
- Fachbereich ChemieTechnische Universität KaiserslauternErwin-Schrödinger-Strasse 5467663KaiserslauternGermany
| |
Collapse
|
2
|
Vafaeezadeh M, Thiel WR. Task‐Specific Janus Materials in Heterogeneous Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Majid Vafaeezadeh
- Technische Universitat Kaiserslautern Chemistry Erwin-Schrödinger-Str. 54 67663 Kaiserslautern GERMANY
| | - Werner R. Thiel
- Kaiserslautern University of Technology: Technische Universitat Kaiserslautern Chemistry Erwin-Schrödinger-Str. 54 67663 Kaiserslautern GERMANY
| |
Collapse
|
3
|
Huang L, Su YQ, Qi R, Dang D, Qin Y, Xi S, Zaman S, You B, Ding S, Xia BY. Boosting Oxygen Reduction via Integrated Construction and Synergistic Catalysis of Porous Platinum Alloy and Defective Graphitic Carbon. Angew Chem Int Ed Engl 2021; 60:25530-25537. [PMID: 34562296 DOI: 10.1002/anie.202111426] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Indexed: 11/09/2022]
Abstract
Integrated fabrication through the strong interaction between catalyst and carrier is crucial to realize efficient oxygen electrocatalysis for fuel cells. We report herein a porous Pt-rich alloy encapsulated by graphitic carbon via integration engineering, where a synergistic catalysis between ternary PtCuCo alloy and graphitic Co-N-C results in the optimized reaction pathway and improved oxygen reduction reaction (ORR) performance. The hybrid catalyst PtCuCo@Co-N-C delivers a mass activity of 1.14 A mgPt -1 at 0.9 V vs. RHE and a peak power density of 960 mW cm-2 in the full-cell assessment, outperforming commercial Pt/C catalyst (0.12 A mgPt -1 and 780 mW cm-2 ). Experimental results combined with theoretical simulations suggest that the mutual assistance between porous Pt alloy and Co-N-C accounts for the enhanced catalytic performance. Such integrated engineering concept is significant for strengthening the anti-corrosion capabilities and improving the ORR performance of Pt-based catalysts.
Collapse
Affiliation(s)
- Lei Huang
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Ya-Qiong Su
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ruijuan Qi
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai, 200241, China
| | - Dai Dang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanyang Qin
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A✶STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore
| | - Shahid Zaman
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Bo You
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Shujiang Ding
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Bao Yu Xia
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| |
Collapse
|
4
|
Huang L, Su Y, Qi R, Dang D, Qin Y, Xi S, Zaman S, You B, Ding S, Xia BY. Boosting Oxygen Reduction via Integrated Construction and Synergistic Catalysis of Porous Platinum Alloy and Defective Graphitic Carbon. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Lei Huang
- School of Chemistry and Chemical Engineering Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) Hubei Key Laboratory of Material Chemistry and Service Failure Hubei Engineering Research Center for Biomaterials and Medical Protective Materials Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology (HUST) 1037 Luoyu Rd Wuhan 430074 China
| | - Ya‐Qiong Su
- School of Chemistry Xi'an Key Laboratory of Sustainable Energy Materials Chemistry State Key Laboratory of Electrical Insulation and Power Equipment Xi'an Jiaotong University Xi'an 710049 China
| | - Ruijuan Qi
- Key Laboratory of Polar Materials and Devices (MOE) Department of Electronics East China Normal University Shanghai 200241 China
| | - Dai Dang
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 China
| | - Yanyang Qin
- School of Chemistry Xi'an Key Laboratory of Sustainable Energy Materials Chemistry State Key Laboratory of Electrical Insulation and Power Equipment Xi'an Jiaotong University Xi'an 710049 China
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences Agency for Science, Technology and Research (A✶STAR) 1 Pesek Road, Jurong Island Singapore 627833 Singapore
| | - Shahid Zaman
- School of Chemistry and Chemical Engineering Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) Hubei Key Laboratory of Material Chemistry and Service Failure Hubei Engineering Research Center for Biomaterials and Medical Protective Materials Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology (HUST) 1037 Luoyu Rd Wuhan 430074 China
| | - Bo You
- School of Chemistry and Chemical Engineering Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) Hubei Key Laboratory of Material Chemistry and Service Failure Hubei Engineering Research Center for Biomaterials and Medical Protective Materials Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology (HUST) 1037 Luoyu Rd Wuhan 430074 China
| | - Shujiang Ding
- School of Chemistry Xi'an Key Laboratory of Sustainable Energy Materials Chemistry State Key Laboratory of Electrical Insulation and Power Equipment Xi'an Jiaotong University Xi'an 710049 China
| | - Bao Yu Xia
- School of Chemistry and Chemical Engineering Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) Hubei Key Laboratory of Material Chemistry and Service Failure Hubei Engineering Research Center for Biomaterials and Medical Protective Materials Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology (HUST) 1037 Luoyu Rd Wuhan 430074 China
| |
Collapse
|