1
|
Luo Y, Zhang L, Wang S, Wang Y, Hua J, Wen C, Zhao S, Liang H. H 2O 2 Self-Supply and Glutathione Depletion Engineering Nanoassemblies for NIR-II Photoacoustic Imaging of Tumor Tissues and Photothermal-Enhanced Gas Starvation-Primed Chemodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38309-38322. [PMID: 37534669 DOI: 10.1021/acsami.3c07227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
The development of tumor microenvironment (TME)-activated nanoassemblies which can produce a photoacoustic (PA) signal and enhance the H2O2 level is critical to achieve accurate diagnosis and highly efficient chemodynamic therapy (CDT). In this study, we developed nanoassemblies consisting of oxygen vacancy titanium dioxide (TiO2-x) surface-constructed copper, sulfur-doped mesoporous organosilica and glucose oxidase (TiO2-x@Cu,S-MONs@GOx, hereafter TMG). We found that highly abundant glutathione (GSH) in the TME nanoassemblies can reduce tetrasulfide bonds and Cu2+ to sulfur ions and Cu+ in the TMG nanoassemblies, respectively, causing the breakage of the tetrasulfide bond and the mesoporous structure collapse, releasing Cu+ ions and TiO2-x nanoparticles, and producing hydrogen sulfide gas, thereby achieving synergistic multimodal tumor treatment through TME-activated NIR-II PA imaging and photothermal-enhanced gas starvation-primed CDT. Therefore, the TMG nanoassemblies form a smart nanoplatform that can serve as an excellent tumor diagnosis-treatment agent by playing an important role in imaging-guided precision diagnosis of cancer and efficient targeting treatment.
Collapse
Affiliation(s)
- Yanni Luo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Liangliang Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Shulong Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Yang Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Jing Hua
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Changchun Wen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Shulin Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
2
|
Yang Y, Wu S, Zhang Q, Chen Z, Wang C, Jiang S, Zhang Y. A multi-responsive targeting drug delivery system for combination photothermal/chemotherapy of tumor. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:166-183. [PMID: 35943449 DOI: 10.1080/09205063.2022.2112310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To achieve efficient delivery and precise release of chemotherapy drugs at tumor sites, an active targeting multi-responsive drug delivery platform was developed. Here, doxorubicin hydrochloride (DOX) was loaded onto polydopamine (PDA), which were coated by the cystamine-modified hyaluronic acid (HA-Cys), designated as DOX@PDA-HA (PDH). The combination of PDA and HA-Cys endowed the nanoplatform photothermal conversion, tumor-targeting, and pH/redox/NIR sensitive drug release capacity. Moreover, HA could be degraded by the excess hyaluronidase (HAase) in the tumor microenvironment (TME), promoting DOX release, and further enhancing the effect of chemotherapy. Experimental results demonstrated PDH good biocompatibility, high loading rate, targeted drug delivery, and efficient tumor cell killing ability. This ingenious strategy based on PDH showed huge potential in photothermal/chemotherapy combination treatment of cancer.
Collapse
Affiliation(s)
- Yuanyuan Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, China
| | - Siqi Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, China
| | - Qinlin Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, China
| | - Zhaoxia Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, China
| | - Caixia Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, China
| | - Sijing Jiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, China
| | - Yuhong Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, China
| |
Collapse
|
3
|
Zhang L, Zhu P, Wan T, Wang H, Mao Z. Glutamine coated titanium for synergistic sonodynamic and photothermal on tumor therapy upon targeted delivery. Front Bioeng Biotechnol 2023; 11:1139426. [PMID: 37101748 PMCID: PMC10123279 DOI: 10.3389/fbioe.2023.1139426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/06/2023] [Indexed: 04/28/2023] Open
Abstract
Introduction: The application of titanium dioxide nanoparticles (TiO2 NPs) for cancer therapy has been studied for decades; however, the targeted delivery of TiO2 NPs to tumor tissues is challenging, and its efficiency needs to be improved. Method: In this study, we designed an oxygen-deficient TiO2-x coated with glutamine layer for targeted delivery, as well as the enhanced separation of electrons (e-) and holes (h+) following the joint application of sonodynamic therapy (SDT) and photothermal therapy (PTT). Results: This oxygen-deficient TiO2-x possesses relatively high photothermal and sonodynamic efficiency at the 1064 nm NIR-II bio-window. The GL-dependent design eased the penetration of the TiO2-x into the tumor tissues (approximately three-fold). The in vitro and in vivo tests showed that the SDT/PTT-based synergistic treatment achieved more optimized therapeutic effects than the sole use of either SDT or PTT. Conclusion: Our study provided a safety targeted delivery strategy, and enhanced the therapeutic efficiency of SDT/PTT synergistic treatment.
Collapse
Affiliation(s)
- Lina Zhang
- Changzhou Maternal and Child Healthcare Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Pengfeng Zhu
- Changzhou Maternal and Child Healthcare Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Ting Wan
- Changzhou Maternal and Child Healthcare Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Huaiyan Wang
- Changzhou Maternal and Child Healthcare Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
- *Correspondence: Zhilei Mao, ; Huaiyan Wang,
| | - Zhilei Mao
- Changzhou Maternal and Child Healthcare Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
- *Correspondence: Zhilei Mao, ; Huaiyan Wang,
| |
Collapse
|
4
|
Li Y, Huang C, Xu Y. Colon cancer exosome-derived biomimetic nanoplatform for curcumin-mediated sonodynamic therapy and calcium overload. Front Bioeng Biotechnol 2022; 10:1069676. [PMID: 36457858 PMCID: PMC9705788 DOI: 10.3389/fbioe.2022.1069676] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/01/2022] [Indexed: 10/03/2023] Open
Abstract
Sonodynamic therapy (SDT) possesses unique properties such as being minimally invasive, exhibiting low toxicity, as well as ability to impart the treatment in the deep tissues, and hence has been extensively used. However, inherent defects such as low water-soluble sonosensitizers can limit the clinical application of SDT, and tumor microenvironment (TME) can further compromise the effect of a single SDT. To overcome these challenges, we have designed a bionic nano-system (ECaC) by coating mesoporous calcium carbonate nanoparticles (CaCO3 NPs) and sonosensitizer curcumin (Cur) into tumor-derived exosomes for developing enhanced SDT. Exosome membrane could endow CaCO3 NPs with homologous targeting abilities. In addition, compared with the bare CaCO3 NPs, ECaC showed significant accumulation in the tumor cell species. Subsequently, CaCO3 NPs upon reaching the tumor site can be degraded into Ca2+ in response to the acidic microenvironment of the tumor to destroy the cellular mitochondria. Hence, the cellular respiration could be destroyed to be a vulnerable state, causing oxidative stress, enhancing Cur-mediated chemotherapy/SDT. This synergistically dynamic therapy has demonstrated significant anti-tumor effects under in vitro and in vivo settings without exhibiting any toxic side effects. Our prepared biomimetic nano-system can effectively deliver the hydrophobic Cur to the tumor sites, which holds great promise in field of drug delivery and can broaden the application of exosomes, as this method has a certain enlightenment effect on the subsequent development of exosomes.
Collapse
Affiliation(s)
- Yang Li
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, China
- School of Pharmacy, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, China
- Department of Gastrointestinal Surgery, Shenzhen People’s Hospital The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Chunyu Huang
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Youhua Xu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, China
- School of Pharmacy, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, China
| |
Collapse
|
5
|
Lu Z, Bai S, Jiang Y, Wu S, Xu D, Zhang J, Peng X, Zhang H, Shi Y, Liu G. Amplifying Dendritic Cell Activation by Bioinspired Nanometal Organic Frameworks for Synergistic Sonoimmunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203952. [PMID: 36148843 DOI: 10.1002/smll.202203952] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/17/2022] [Indexed: 06/16/2023]
Abstract
Despite recent advancements of sonodynamic therapy (SDT) in cancer immunotherapy, challenges have yet to be surmounted to further boost its immunotherapeutic efficacy due to the low-level tumor antigens presentation of dendritic cells (DCs). Cell membrane camouflaged-nanoparticles can integrate the neoantigens of the cancer cell membrane with the multifunctionalities of synthetic nanocores. Herein, sono-responsive nanoparticles coated with DC-targeted antibody chimeric cancer cell membrane are investigated for multimodal therapy. The nanometal organic frameworks (MOFs) that respond to ultrasound are loaded successfully inside the vesicles displaying an anti-DEC205 antibody. The anti-DEC205 chimeric vesicles can directly target and activate DCs, promote tumor antigens cross-presentation, and then produce a cascade amplified T-cell immune response. Upon deep tissue-penetrating sonication, AMR-MOF@AuPt generates large amounts of reactive oxygen species that directly kill cancer cells, further initiating an anti-cancer T cell immune response. Such synergistic sono-immunotherapies effectually inhibit tumor growth and induce strong systemic and long-term immune memory against cancer recurrence and distant metastasis. The authors findings provide DCs and tumor cells of a dual active-targeting cell membrane-coated sono-immunotherapeutic nanoplatform for cancer therapy.
Collapse
Affiliation(s)
- Zhixiang Lu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, P. R. China
| | - Shuang Bai
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, P. R. China
| | - Yonghe Jiang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, P. R. China
| | - Shuaiying Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, P. R. China
| | - Dazhuang Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, P. R. China
| | - Jianzhong Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, P. R. China
| | - Xuqi Peng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, P. R. China
| | - Hongrui Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, P. R. China
| | - Yesi Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, P. R. China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, P. R. China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, P. R. China
| |
Collapse
|
6
|
Chen L, Xue W, Cao J, Zhang S, Zeng Y, Ma L, Qian X, Wen Q, Hong Y, Shi Z, Xu Y. TiSe 2-mediated sonodynamic and checkpoint blockade combined immunotherapy in hypoxic pancreatic cancer. J Nanobiotechnology 2022; 20:453. [PMID: 36243711 PMCID: PMC9571469 DOI: 10.1186/s12951-022-01659-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/06/2022] [Indexed: 11/30/2022] Open
Abstract
Background Pancreatic cancer remains among the most prevalent and aggressive forms of cancer. While immunotherapeutic treatment strategies have shown some promise in affected patients, the benefits of these interventions have been limited by insufficient tumor infiltration by activated T cells. Results Here, Titanium diselenide (TiSe2) nanosheets were synthesized with good stability. When exposed to ultrasound (US), the TiSe2 nanosheets served as a reliable nano-sensitizer capable of inducing large amounts of reactive oxygen species (ROS) mediating sonodynamic therapy (SDT) under hypoxic and normoxic conditions. The tumor-released TAAs induced by TiSe2 nanosheet-mediated SDT promoted immunogenic cell death (ICD) conducive to the maturation of dendritic cells (DCs), and cytokine secretion and the subsequent activation and infiltration of T cells into the tumor. Combining TiSe2-mediated SDT with anti-PD-1 immune checkpoint blockade treatment led to the efficient suppression of the growth of both primary tumor and distant tumor, while simultaneously preventing lung metastasis. These improved immunotherapeutic and anti-metastatic outcomes were associated with activated systematic antitumor immune responses, including the higher levels of DC maturation and cytokine secretion, the increased levels of CD8+ T cells and the decreased levels of Treg cells infiltrated in tumors. Conclusion TiSe2 can be used as a sonosensitizer with good efficacy and high safety to mediate efficient SDT. The combination treatment strategy comprised of TiSe2-mediated SDT and PD-1 blockade activate anti-tumor immune responses effectively thorough inducing ICD, resulting in the inhibition the growth and metastasis of tumor. The combination therapy holds promise as a novel immunotherapy-based intervention strategy for pancreatic cancer patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01659-4.
Collapse
Affiliation(s)
- Libin Chen
- Department of Ultrasound in Medicine, Ningbo First Hospital, Ningbo, 315010, People's Republic of China.,Tongji University School of Medicine, Shanghai, 200072, People's Republic of China.,Department of Ultrasound in Medicine, Ningbo Ninth Hospital, Ningbo, 315032, People's Republic of China
| | - Wang Xue
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, People's Republic of China.,Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Jing Cao
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, People's Republic of China.,Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Shengmin Zhang
- Department of Ultrasound in Medicine, Ningbo First Hospital, Ningbo, 315010, People's Republic of China
| | - Yiqing Zeng
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, People's Republic of China.,Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Ling Ma
- Department of Ultrasound in Medicine, Ningbo First Hospital, Ningbo, 315010, People's Republic of China
| | - Xuechen Qian
- Department of Ultrasound in Medicine, Ningbo First Hospital, Ningbo, 315010, People's Republic of China
| | - Qing Wen
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, People's Republic of China.,Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yurong Hong
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, People's Republic of China.,Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Zhan Shi
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, People's Republic of China. .,Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| | - Youfeng Xu
- Department of Ultrasound in Medicine, Ningbo First Hospital, Ningbo, 315010, People's Republic of China.
| |
Collapse
|
7
|
Yang Z, Yuan M, Liu B, Zhang W, Maleki A, Guo B, Ma P, Cheng Z, Lin J. Conferring BiVO
4
Nanorods with Oxygen Vacancies to Realize Enhanced Sonodynamic Cancer Therapy. Angew Chem Int Ed Engl 2022; 61:e202209484. [DOI: 10.1002/anie.202209484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Zhuang Yang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Changchun 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei 230026 P. R. China
| | - Meng Yuan
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Changchun 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei 230026 P. R. China
| | - Bin Liu
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Changchun 130022 P. R. China
| | - Wenying Zhang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Changchun 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei 230026 P. R. China
| | - Aziz Maleki
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), and Department of Pharmaceutical Nanotechnology School of Pharmacy Zanjan University of Medical Sciences Zanjan 45139-56184 Iran
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, and Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research College of Stomatology Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Changchun 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei 230026 P. R. China
| | - Ziyong Cheng
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Changchun 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei 230026 P. R. China
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs School of Pharmacy Guangdong Medical University Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials Dongguan 523808 P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Changchun 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
8
|
Yang Z, Yuan M, Liu B, Zhang W, Maleki A, Guo B, Ma P, Cheng Z, Lin J. Conferring BiVO4 Nanorods with Oxygen Vacancies to Realize Enhanced Sonodynamic Cancer Therapy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhuang Yang
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Rare Earth Resource Utilization CHINA
| | - Meng Yuan
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Rare Earth Resource Utilization CHINA
| | - Bin Liu
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Rare Earth Resource Utilization CHINA
| | - Wenying Zhang
- Chang Chun Institute of Applied Chemistry: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Rare Earth Resource Utilization CHINA
| | - Aziz Maleki
- Zanjan University of Medical Sciences Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC) CHINA
| | - Baolin Guo
- Xi'an Jiaotong University State Key Laboratory for Mechanical Behavior of Materials CHINA
| | - Ping’an Ma
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Rare Earth Resource Utilization CHINA
| | - Ziyong Cheng
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Rare Earth Resource Utilization CHINA
| | - Jun Lin
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences Lab Rare Earth Chem Phys 5625 Remin Street 130022 Changchun CHINA
| |
Collapse
|
9
|
Zhao PH, Wu YL, Li XY, Feng LL, Zhang L, Zheng BY, Ke MR, Huang JD. Aggregation-Enhanced Sonodynamic Activity of Phthalocyanine-Artesunate Conjugates. Angew Chem Int Ed Engl 2022; 61:e202113506. [PMID: 34761489 DOI: 10.1002/anie.202113506] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/05/2021] [Indexed: 12/15/2022]
Abstract
The clinical prospect of sonodynamic therapy (SDT) has not been fully realized due to the scarcity of efficient sonosensitizers. Herein, we designed phthalocyanine-artesunate conjugates (e.g. ZnPcT4 A), which could generate up to ca. 10-fold more reactive oxygen species (ROS) than the known sonosensitizer protoporphyrin IX. Meanwhile, an interesting and significant finding of aggregation-enhanced sonodynamic activity (AESA) was observed for the first time. ZnPcT4 A showed about 60-fold higher sonodynamic ROS generation in the aggregated form than in the disaggregated form in aqueous solutions. That could be attributed to the boosted ultrasonic cavitation of nanostructures. The level of the AESA effect depended on the aggregation ability of sonosensitizer molecules and the particle size of their aggregates. Moreover, biological studies demonstrated that ZnPcT4 A had high anticancer activities and biosafety. This study thus opens up a new avenue the development of efficient organic sonosensitizers.
Collapse
Affiliation(s)
- Peng-Hui Zhao
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yu-Lin Wu
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Xue-Yan Li
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Lin-Lin Feng
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Ling Zhang
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Bi-Yuan Zheng
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Mei-Rong Ke
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Jian-Dong Huang
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian, 350108, China
| |
Collapse
|
10
|
Zhao P, Wu Y, Li X, Feng L, Zhang L, Zheng B, Ke M, Huang J. Aggregation‐Enhanced Sonodynamic Activity of Phthalocyanine–Artesunate Conjugates. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Peng‐Hui Zhao
- College of Chemistry State Key Laboratory of Photocatalysis on Energy and Environment Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy Fuzhou University Fuzhou Fujian 350108 China
| | - Yu‐Lin Wu
- College of Chemistry State Key Laboratory of Photocatalysis on Energy and Environment Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy Fuzhou University Fuzhou Fujian 350108 China
| | - Xue‐Yan Li
- College of Chemistry State Key Laboratory of Photocatalysis on Energy and Environment Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy Fuzhou University Fuzhou Fujian 350108 China
| | - Lin‐Lin Feng
- College of Chemistry State Key Laboratory of Photocatalysis on Energy and Environment Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy Fuzhou University Fuzhou Fujian 350108 China
| | - Ling Zhang
- College of Chemistry State Key Laboratory of Photocatalysis on Energy and Environment Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy Fuzhou University Fuzhou Fujian 350108 China
| | - Bi‐Yuan Zheng
- College of Chemistry State Key Laboratory of Photocatalysis on Energy and Environment Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy Fuzhou University Fuzhou Fujian 350108 China
| | - Mei‐Rong Ke
- College of Chemistry State Key Laboratory of Photocatalysis on Energy and Environment Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy Fuzhou University Fuzhou Fujian 350108 China
| | - Jian‐Dong Huang
- College of Chemistry State Key Laboratory of Photocatalysis on Energy and Environment Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy Fuzhou University Fuzhou Fujian 350108 China
| |
Collapse
|
11
|
Zhang Y, Zhang X, Yang H, Yu L, Xu Y, Sharma A, Yin P, Li X, Kim JS, Sun Y. Advanced biotechnology-assisted precise sonodynamic therapy. Chem Soc Rev 2021; 50:11227-11248. [PMID: 34661214 DOI: 10.1039/d1cs00403d] [Citation(s) in RCA: 215] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite significant advances, the therapeutic impact of photodynamic therapy is still substantially hampered by the restricted penetration depth of light and the reactive oxygen species (ROS)-mediated toxicity, which is impeded by the shorter effective half-life and radius of ROS produced during treatment. Sonodynamic therapy (SDT), on the other hand, provides unrivalled benefits in deep-seated tumour ablation due to its deep penetration depth and not totally ROS-dependent toxicity, exhibiting enormous preclinical and clinical potential. In this tutorial review, we highlight imaging-guided precise SDT, which allows choosing the best treatment option and monitoring the therapy response in real-time, as well as recent clinical trials based on SDT. Aside from that, the subtle design strategies of sonosensitizers based on tumour environment shaping and rational structure modification, as well as SDT combination treatment (chemotherapy, chemodynamic therapy, photodynamic therapy, photothermal therapy, gas therapy and immunotherapy), aimed at a more effective treatment outcome, are summarized. Finally, we discussed the future of SDT for personalized cancer and other disease treatments.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Xiangqian Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China. .,State Key Laboratory of Agricultural Microbiology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Huocheng Yang
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Le Yu
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| | - Yunjie Xu
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| | - Amit Sharma
- CSIR-Central Scientific Instruments Organisation, Sector-30C, Chandigarh 160030, India
| | - Peng Yin
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Hunan Normal University), Ministry of Education, Changsha, Hunan 410081, China
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| | - Yao Sun
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|