1
|
Yan S, Chen Z, Chen Y, Peng C, Ma X, Lv X, Qiu Z, Yang Y, Yang Y, Kuang M, Xu X, Zheng G. High-Power CO 2-to-C 2 Electroreduction on Ga-Spaced, Square-like Cu Sites. J Am Chem Soc 2023; 145:26374-26382. [PMID: 37992232 DOI: 10.1021/jacs.3c10202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
The electrochemical conversion of CO2 into multicarbon (C2) products on Cu-based catalysts is strongly affected by the surface coverage of adsorbed CO (*CO) intermediates and the subsequent C-C coupling. However, the increased *CO coverage inevitably leads to strong *CO repulsion and a reduced C-C coupling efficiency, thus resulting in suboptimal CO2-to-C2 activity and selectivity, especially at ampere-level electrolysis current densities. Herein, we developed an atomically ordered Cu9Ga4 intermetallic compound consisting of Cu square-like binding sites interspaced by catalytically inert Ga atoms. Compared to Cu(100) previously known with a high C2 selectivity, the Ga-spaced, square-like Cu sites presented an elongated Cu-Cu distance that allowed to reduce *CO repulsion and increased *CO coverage simultaneously, thus endowing more efficient C-C coupling to C2 products than Cu(100) and Cu(111). The Cu9Ga4 catalyst exhibited an outstanding CO2-to-C2 electroreduction, with a peak C2 partial current density of 1207 mA cm-2 and a corresponding Faradaic efficiency of 71%. Moreover, the Cu9Ga4 catalyst demonstrated a high-power (∼200 W) electrolysis capability with excellent electrochemical stability.
Collapse
Affiliation(s)
- Shuai Yan
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Zheng Chen
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Yangshen Chen
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Chen Peng
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Xingyu Ma
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan Province 610041, China
| | - Ximeng Lv
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Zhehao Qiu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yong Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yaoyue Yang
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan Province 610041, China
| | - Min Kuang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xin Xu
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
- MOE Key Laboratory of Computational Physical Sciences, Fudan University, Shanghai 200433, China
- Hefei National Laboratory, Hefei 230088, China
| | - Gengfeng Zheng
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| |
Collapse
|
2
|
Yan T, Chen X, Kumari L, Lin J, Li M, Fan Q, Chi H, Meyer TJ, Zhang S, Ma X. Multiscale CO 2 Electrocatalysis to C 2+ Products: Reaction Mechanisms, Catalyst Design, and Device Fabrication. Chem Rev 2023; 123:10530-10583. [PMID: 37589482 DOI: 10.1021/acs.chemrev.2c00514] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Electrosynthesis of value-added chemicals, directly from CO2, could foster achievement of carbon neutral through an alternative electrical approach to the energy-intensive thermochemical industry for carbon utilization. Progress in this area, based on electrogeneration of multicarbon products through CO2 electroreduction, however, lags far behind that for C1 products. Reaction routes are complicated and kinetics are slow with scale up to the high levels required for commercialization, posing significant problems. In this review, we identify and summarize state-of-art progress in multicarbon synthesis with a multiscale perspective and discuss current hurdles to be resolved for multicarbon generation from CO2 reduction including atomistic mechanisms, nanoscale electrocatalysts, microscale electrodes, and macroscale electrolyzers with guidelines for future research. The review ends with a cross-scale perspective that links discrepancies between different approaches with extensions to performance and stability issues that arise from extensions to an industrial environment.
Collapse
Affiliation(s)
- Tianxiang Yan
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaoyi Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Lata Kumari
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jianlong Lin
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Minglu Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Qun Fan
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Haoyuan Chi
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Thomas J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sheng Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Xinbin Ma
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
3
|
Li Y, Chen Y, Chen T, Shi G, Zhu L, Sun Y, Yu M. Insight into the Electrochemical CO 2-to-Ethanol Conversion Catalyzed by Cu 2S Nanocrystal-Decorated Cu Nanosheets. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18857-18866. [PMID: 37022952 DOI: 10.1021/acsami.3c00032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Ethanol (C2H5OH) is an economically ideal C2 product in electrochemical CO2 reduction. However, the CO2-to-C2H5OH conversion yield has been rather low and the underlying catalytic mechanism remains vague or unexplored in most cases. Herein, by decorating small Cu2S nanocrystals uniform ly on Cu nanosheets, three desirable features are integrated into the electrocatalyst, including a relatively high positive local charge on Cu (Cuδ+), abundant interfaces between Cuδ+ and zero-valence Cu0, and a non-flat, stepped catalyst surface, leading to the promoted affinity of *CO, decreased *COCO formation barrier, and thermodynamically preferred *CH2CHO-to-*CH3CHO conversion. As a result, a high partial current density of ∼20.7 mA cm-2 and a Faraday efficiency of 46% for C2H5OH are delivered at -1.2 V vs reversible hydrogen electrode in an H-cell containing a 0.1 M KHCO3 solution. This work proposes an efficient strategy for the high-yield CO2-to-C2H5OH conversion, emphasizing the promise for the industrial production of alcohol and related products from CO2.
Collapse
Affiliation(s)
- Yi Li
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yanghan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Condensed Matter Science and Technology Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Tao Chen
- State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China
| | - Guoqiang Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Lin Zhu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Ye Sun
- Condensed Matter Science and Technology Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Miao Yu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
4
|
Casebolt DiDomenico R, Levine K, Reimanis L, Abruña HD, Hanrath T. Mechanistic Insights into the Formation of CO and C 2 Products in Electrochemical CO 2 Reduction─The Role of Sequential Charge Transfer and Chemical Reactions. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
5
|
Zhang Z, Chen X, Wang B, Wang L, Li Y, Yan X, Chen L. Continuous synthesis of 2,2,6,6-tetramethyl-4-piperidinol over CuCrSr/Al 2O 3: effect of Sr promoter. RSC Adv 2023; 13:9576-9584. [PMID: 36968054 PMCID: PMC10037677 DOI: 10.1039/d2ra08306j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/06/2023] [Indexed: 03/26/2023] Open
Abstract
A continuous process was developed for catalytic hydrogenation of triacetoneamine (TAA) to 2,2,6,6-tetramethyl-4-piperidinol (TMP), both of which are indispensable raw materials of hindered amine light stabilizers. A series of promoter-modified CuCr/Al2O3 catalysts were prepared by co-precipitation method and evaluated by the above reaction. The effect of promoter on the catalytic performance was explored by characterization tools, in which, CuCrSr/Al2O3 exhibited excellent catalytic performance with nearly complete conversion of TAA and over 97% selectivity of TMP at 120 °C. The characterization results indicated that the doped Sr could decrease the size of Cu nanoparticles to provide more active sites, improve the ratio of Cu+/Cu0 to promote the adsorption of substrates, and reduce the surface acidity to depress side reactions, thus remarkably enhancing catalytic performance. This work provides a low-cost, reliable and efficient strategy for the continuous industrial production of TMP.
Collapse
Affiliation(s)
- Zijing Zhang
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 P. R. China
- Zhejiang Institute of Tianjin University Shaoxing Zhejiang 312300 P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals Tianjin P. R. China
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center Guangdong Province 522000 P. R. China
| | - Xi Chen
- Institute of Pharmaceutical Sciences, China Pharmaceutical University Nanjing 210009 P. R. China
| | - Bowei Wang
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 P. R. China
- Zhejiang Institute of Tianjin University Shaoxing Zhejiang 312300 P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals Tianjin P. R. China
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center Guangdong Province 522000 P. R. China
| | - Long Wang
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 P. R. China
| | - Yang Li
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals Tianjin P. R. China
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center Guangdong Province 522000 P. R. China
| | - Xilong Yan
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals Tianjin P. R. China
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center Guangdong Province 522000 P. R. China
| | - Ligong Chen
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 P. R. China
- Zhejiang Institute of Tianjin University Shaoxing Zhejiang 312300 P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals Tianjin P. R. China
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center Guangdong Province 522000 P. R. China
| |
Collapse
|
6
|
Nie W, Heim GP, Watkins NB, Agapie T, Peters JC. Organic Additive-derived Films on Cu Electrodes Promote Electrochemical CO 2 Reduction to C 2+ Products Under Strongly Acidic Conditions. Angew Chem Int Ed Engl 2023; 62:e202216102. [PMID: 36656130 DOI: 10.1002/anie.202216102] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/19/2022] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
Electrochemical CO2 reduction (CO2 R) at low pH is desired for high CO2 utilization; the competing hydrogen evolution reaction (HER) remains a challenge. High alkali cation concentration at a high operating current density has recently been used to promote electrochemical CO2 R at low pH. Herein we report an alternative approach to selective CO2 R (>70 % Faradaic efficiency for C2+ products, FEC2+ ) at low pH (pH 2; H3 PO4 /KH2 PO4 ) and low potassium concentration ([K+ ]=0.1 M) using organic film-modified polycrystalline copper (Modified-Cu). Such an electrode effectively mitigates HER due to attenuated proton transport. Modified-Cu still achieves high FEC2+ (45 % with Cu foil /55 % with Cu GDE) under 1.0 M H3 PO4 (pH≈1) at low [K+ ] (0.1 M), even at low operating current, conditions where HER can otherwise dominate.
Collapse
Affiliation(s)
- Weixuan Nie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA-91125, USA
| | - Gavin P Heim
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA-91125, USA
| | - Nicholas B Watkins
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA-91125, USA
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA-91125, USA
| | - Jonas C Peters
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA-91125, USA
| |
Collapse
|
7
|
Chen X, Zhao Y, Han J, Bu Y. Copper-Based Catalysts for Electrochemical Reduction of Carbon Dioxide to Ethylene. Chempluschem 2023; 88:e202200370. [PMID: 36651767 DOI: 10.1002/cplu.202200370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/01/2023] [Indexed: 01/06/2023]
Abstract
Electrochemical reduction of CO2 into high energy density multi-carbon chemicals or fuels (e. g., ethylene) via new renewable energy storage has extraordinary implications for carbon neutrality. Copper (Cu)-based catalysts have been recognized as the most promising catalysts for the electrochemical reduction of CO2 to ethylene (C2 H4 ) due to their moderate CO adsorption energy and moderate hydrogen precipitation potential. However, the poor selectivity, low current density and high overpotential of the CO2 RR into C2 H4 greatly limit its industrial applications. Meanwhile, the complex reaction mechanism is still unclear, which leads to blindness in the design of catalysts. Herein, we systematically summarized the latest research, proposed possible conversion mechanisms and categorized the general strategies to adjust of the structure and composition for CO2 RR, such as tip effect, defect engineering, crystal plane catalysis, synergistic effect, nanoconfinement effect and so on. Eventually, we provided a prospect of the future challenges for further development and progress in CO2 RR. Previous reviews have summarized catalyst designs for the reduction of CO2 to multi-carbon products, while lacking in targeting C2 H4 alone, an important industrial feedstock. This Review mainly aims to provide a comprehensive understanding for the design strategies and challenges of electrocatalytic CO2 reduction to C2 H4 through recent researches and further propose some guidelines for the future design of copper-based catalysts for electroreduction of CO2 to C2 H4 .
Collapse
Affiliation(s)
- Xiao Chen
- Jiangsu Collaborative Innovation Center of, Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of, Atmospheric Environment Monitoring and Pollution Control (AEMPC), UNIST-NUIST Energy and Environment Jointed Lab (UNNU), School of Environmental Science and Technology, Nanjing University of Information Science and Technology (NUIST), Nanjing, 210044, P. R. China
| | - Yunxia Zhao
- Jiangsu Collaborative Innovation Center of, Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of, Atmospheric Environment Monitoring and Pollution Control (AEMPC), UNIST-NUIST Energy and Environment Jointed Lab (UNNU), School of Environmental Science and Technology, Nanjing University of Information Science and Technology (NUIST), Nanjing, 210044, P. R. China
| | - Jiayi Han
- Jiangsu Collaborative Innovation Center of, Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of, Atmospheric Environment Monitoring and Pollution Control (AEMPC), UNIST-NUIST Energy and Environment Jointed Lab (UNNU), School of Environmental Science and Technology, Nanjing University of Information Science and Technology (NUIST), Nanjing, 210044, P. R. China
| | - Yunfei Bu
- Jiangsu Collaborative Innovation Center of, Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of, Atmospheric Environment Monitoring and Pollution Control (AEMPC), UNIST-NUIST Energy and Environment Jointed Lab (UNNU), School of Environmental Science and Technology, Nanjing University of Information Science and Technology (NUIST), Nanjing, 210044, P. R. China
| |
Collapse
|
8
|
Shi H, Wang H, Zhou Y, Li J, Zhai P, Li X, Gurzadyan GG, Hou J, Yang H, Guo X. Atomically Dispersed Indium‐Copper Dual‐Metal Active Sites Promoting C−C Coupling for CO
2
Photoreduction to Ethanol. Angew Chem Int Ed Engl 2022; 61:e202208904. [DOI: 10.1002/anie.202208904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Hainan Shi
- State Key Laboratory of Fine Chemicals PSU-DUT Joint Center for Energy Research, and School of Chemical Engineering Dalian University of Technology Dalian 116024 China
| | - Haozhi Wang
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou 350207 China
| | - Yichen Zhou
- State Key Laboratory of Fine Chemicals PSU-DUT Joint Center for Energy Research, and School of Chemical Engineering Dalian University of Technology Dalian 116024 China
| | - Jiahui Li
- State Key Laboratory of Fine Chemicals PSU-DUT Joint Center for Energy Research, and School of Chemical Engineering Dalian University of Technology Dalian 116024 China
| | - Panlong Zhai
- State Key Laboratory of Fine Chemicals PSU-DUT Joint Center for Energy Research, and School of Chemical Engineering Dalian University of Technology Dalian 116024 China
| | - Xiangyang Li
- State Key Laboratory of Fine Chemicals PSU-DUT Joint Center for Energy Research, and School of Chemical Engineering Dalian University of Technology Dalian 116024 China
| | - Gagik G. Gurzadyan
- State Key Laboratory of Fine Chemicals PSU-DUT Joint Center for Energy Research, and School of Chemical Engineering Dalian University of Technology Dalian 116024 China
| | - Jungang Hou
- State Key Laboratory of Fine Chemicals PSU-DUT Joint Center for Energy Research, and School of Chemical Engineering Dalian University of Technology Dalian 116024 China
| | - Hong Yang
- School of Engineering The University of Western Australia Perth WA 6009 Australia
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals PSU-DUT Joint Center for Energy Research, and School of Chemical Engineering Dalian University of Technology Dalian 116024 China
| |
Collapse
|
9
|
Ding L, Zhu N, Hu Y, Chen Z, Song P, Sheng T, Wu Z, Xiong Y. Over 70 % Faradaic Efficiency for CO
2
Electroreduction to Ethanol Enabled by Potassium Dopant‐Tuned Interaction between Copper Sites and Intermediates. Angew Chem Int Ed Engl 2022; 61:e202209268. [DOI: 10.1002/anie.202209268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Lianchun Ding
- Key Laboratory of Functional Molecular Solids Ministry of Education Anhui Key Laboratory of Molecule-Based Materials Anhui Provincial Engineering Laboratory of New-Energy Vehicle Battery Energy-Storage Materials Anhui Engineering Research Center of Carbon Neutrality College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 P. R. China
| | - Nannan Zhu
- Key Laboratory of Functional Molecular Solids Ministry of Education Anhui Key Laboratory of Molecule-Based Materials Anhui Provincial Engineering Laboratory of New-Energy Vehicle Battery Energy-Storage Materials Anhui Engineering Research Center of Carbon Neutrality College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 P. R. China
| | - Yan Hu
- Key Laboratory of Functional Molecular Solids Ministry of Education Anhui Key Laboratory of Molecule-Based Materials Anhui Provincial Engineering Laboratory of New-Energy Vehicle Battery Energy-Storage Materials Anhui Engineering Research Center of Carbon Neutrality College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 P. R. China
| | - Zheng Chen
- Key Laboratory of Functional Molecular Solids Ministry of Education Anhui Key Laboratory of Molecule-Based Materials Anhui Provincial Engineering Laboratory of New-Energy Vehicle Battery Energy-Storage Materials Anhui Engineering Research Center of Carbon Neutrality College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 P. R. China
| | - Pin Song
- Key Laboratory of Functional Molecular Solids Ministry of Education Anhui Key Laboratory of Molecule-Based Materials Anhui Provincial Engineering Laboratory of New-Energy Vehicle Battery Energy-Storage Materials Anhui Engineering Research Center of Carbon Neutrality College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 P. R. China
| | - Tian Sheng
- Key Laboratory of Functional Molecular Solids Ministry of Education Anhui Key Laboratory of Molecule-Based Materials Anhui Provincial Engineering Laboratory of New-Energy Vehicle Battery Energy-Storage Materials Anhui Engineering Research Center of Carbon Neutrality College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 P. R. China
| | - Zhengcui Wu
- Key Laboratory of Functional Molecular Solids Ministry of Education Anhui Key Laboratory of Molecule-Based Materials Anhui Provincial Engineering Laboratory of New-Energy Vehicle Battery Energy-Storage Materials Anhui Engineering Research Center of Carbon Neutrality College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 P. R. China
| | - Yujie Xiong
- Key Laboratory of Functional Molecular Solids Ministry of Education Anhui Key Laboratory of Molecule-Based Materials Anhui Provincial Engineering Laboratory of New-Energy Vehicle Battery Energy-Storage Materials Anhui Engineering Research Center of Carbon Neutrality College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 P. R. China
- School of Chemistry and Materials Science Hefei National Research Center for Physical Sciences at the Microscale University of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
10
|
Wang J, Chen Y, Zhang S, Yang C, Zhang JY, Su Y, Zheng G, Fang X. Controllable States and Porosity of Cu-Carbon for CO 2 Electroreduction to Hydrocarbons. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202238. [PMID: 35973948 DOI: 10.1002/smll.202202238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/24/2022] [Indexed: 06/15/2023]
Abstract
The electrocatalytic carbon dioxide reduction reaction (CO2 RR) to value-added chemical products is an effective strategy for both greenhouse effect mitigation and high-density energy storage. However, controllable manipulation of the oxidation state and porous structure of Cu-carbon based catalysts to achieve high selectivity and current density for a particular product remains very challenging. Herein, a strategy derived from Cu-based metal-organic frameworks (MOFs) for the synthesis of controllable oxidation states and porous structure of Cu-carbon (Cu-pC, Cu2 O-pC, and Cu2 O/Cu-pC) is demonstrated. By regulating oxygen partial pressure during the annealing process, the valence state of the Cu and mesoporous structures of surrounding carbon are changed, leads to the different selectivity of products. Cu2 O/CuO-pC with the higher oxidation state exhibits FEC2H4 of 65.12% and a partial current density of -578 mA cm-2 , while the Cu2 O-pC shows the FECH4 over 55% and a partial current density exceeding -438 mA cm-2 . Experimental and theoretical studies indicate that porous carbon-coated Cu2 O structures favor the CH4 pathway and inhibit the hydrogen evolution reaction. This work provides an effective strategy for exploring the influence of the various valence states of Cu and mesoporous carbon structures on the selectivity of CH4 and C2 H4 products in CO2 RR.
Collapse
Affiliation(s)
- Jing Wang
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yangshen Chen
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Faculty of Chemistry and Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Shishi Zhang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Chao Yang
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Faculty of Chemistry and Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Jun-Ye Zhang
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Faculty of Chemistry and Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yaqiong Su
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Gengfeng Zheng
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Faculty of Chemistry and Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Xiaosheng Fang
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
11
|
Shi H, Wang H, Zhou Y, Li J, Zhai P, Li X, Gargik G G, Hou J, Yang H, Guo X. Atomically Dispersed Indium‐Copper Dual‐Metal Active Sites Promoting C–C Coupling for CO2 Photoreduction to Ethanol. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hainan Shi
- Dalian University of Technology State Key Lab of Finechemicals CHINA
| | - Haozhi Wang
- Tianjin University Chemical Engineering CHINA
| | - Yichen Zhou
- Dalian University of Technology State Key Lab of Finechemicals CHINA
| | - Jiahui Li
- Dalian University of Technology State Key Lab of Finechemicals CHINA
| | - Panlong Zhai
- Dalian University of Technology State Key Lab of Finechemicals CHINA
| | - Xiangyang Li
- Dalian University of Technology State Key Lab of Finechemicals CHINA
| | | | - Jungang Hou
- Dalian University of Technology State Key Lab of Finechemicals CHINA
| | - Hong Yang
- The University of Western Australia School of Engineering AUSTRALIA
| | - Xinwen Guo
- Dalian University of Technology State Key Leb of Fine Chemicals No 2 Linggong Road, Gaoxin District 116024 Dalian CHINA
| |
Collapse
|
12
|
Stabilization of Cu
+
via Strong Electronic Interaction for Selective and Stable CO
2
Electroreduction. Angew Chem Int Ed Engl 2022; 61:e202205832. [DOI: 10.1002/anie.202205832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Indexed: 11/07/2022]
|
13
|
Ding L, Zhu N, Hu Y, Chen Z, Song P, Sheng T, Wu Z, Xiong Y. Over 70% Faradaic Efficiency for CO2 Electroreduction to Ethanol Enabled by K Dopant‐Tuned Cu Sites‐Intermediates Interaction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | - Yan Hu
- Anhui Normal University Chemistry CHINA
| | | | - Pin Song
- Anhui Normal University Chemistry CHINA
| | | | | | - Yujie Xiong
- University of Science and Technology of China Jinzhai Road 96 230026 Hefei CHINA
| |
Collapse
|
14
|
Zhou Y, Yao Y, Zhao R, Wang X, Fu Z, Wang D, Wang H, Zhao L, Ni W, Yang Z, Yan Y. Stabilization of Cu
+
via Strong Electronic Interaction for Selective and Stable CO
2
Electroreduction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yixiang Zhou
- State Key Lab of Organic-Inorganic Composites Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Yebo Yao
- State Key Lab of Organic-Inorganic Composites Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Rui Zhao
- State Key Lab of Organic-Inorganic Composites Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Xiaoxuan Wang
- State Key Lab of Organic-Inorganic Composites Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Zhenzhen Fu
- State Key Lab of Organic-Inorganic Composites Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Dewei Wang
- State Key Lab of Organic-Inorganic Composites Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Huaizhi Wang
- State Key Lab of Organic-Inorganic Composites Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Liang Zhao
- State Key Lab of Organic-Inorganic Composites Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Wei Ni
- Beijing Aerospace Propulsion Institute Beijing 100076 China
| | - Zhiyu Yang
- State Key Lab of Organic-Inorganic Composites Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Yi‐Ming Yan
- State Key Lab of Organic-Inorganic Composites Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China
| |
Collapse
|
15
|
Imparting CO
2
Electroreduction Auxiliary for Integrated Morphology Tuning and Performance Boosting in a Porphyrin‐based Covalent Organic Framework. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Jia Z, Han D, Chang F, Fu X, Bai Z, Yang L. Synergistic effect of Cu/Cu 2O surfaces and interfaces for boosting electrosynthesis of ethylene from CO 2 in a Zn–CO 2 battery. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01131j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We constructed Cu/Cu2O hybrid catalysts with highly active surfaces/interfaces to realize a synergistic effect, thus improving the selectivity and efficiency of C2H4 production.
Collapse
Affiliation(s)
- Zhichao Jia
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Dandan Han
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Fangfang Chang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Xiaogang Fu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Zhengyu Bai
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Lin Yang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
17
|
Deng B, Huang M, Li K, Zhao X, Geng Q, Chen S, Xie H, Dong X, Wang H, Dong F. The Crystal Plane is not the Key Factor for CO
2
‐to‐Methane Electrosynthesis on Reconstructed Cu
2
O Microparticles. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202114080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Bangwei Deng
- Research Center for Environmental and Energy Catalysis Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 611731 P.R. China
- Yangtze Delta Region Institute (Huzhou) University of Electronic Science and Technology of China Huzhou 313001 P.R. China
| | - Ming Huang
- Yangtze Delta Region Institute (Huzhou) University of Electronic Science and Technology of China Huzhou 313001 P.R. China
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive 637457 Singapore Singapore
| | - Kanglu Li
- College of Architecture and Environment Sichuan University Chengdu 610065 P.R. China
| | - Xiaoli Zhao
- Research Center for Environmental and Energy Catalysis Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 611731 P.R. China
| | - Qin Geng
- Research Center for Environmental and Energy Catalysis Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 611731 P.R. China
- Yangtze Delta Region Institute (Huzhou) University of Electronic Science and Technology of China Huzhou 313001 P.R. China
| | - Si Chen
- Yangtze Delta Region Institute (Huzhou) University of Electronic Science and Technology of China Huzhou 313001 P.R. China
| | - Hongtao Xie
- Research Center for Environmental and Energy Catalysis Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 611731 P.R. China
- Yangtze Delta Region Institute (Huzhou) University of Electronic Science and Technology of China Huzhou 313001 P.R. China
| | - Xing'an Dong
- Research Center for Environmental and Energy Catalysis Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 611731 P.R. China
| | - Hong Wang
- Research Center for Environmental and Energy Catalysis Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 611731 P.R. China
| | - Fan Dong
- Research Center for Environmental and Energy Catalysis Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 611731 P.R. China
- Yangtze Delta Region Institute (Huzhou) University of Electronic Science and Technology of China Huzhou 313001 P.R. China
| |
Collapse
|
18
|
Deng B, Huang M, Li K, Zhao X, Geng Q, Chen S, Xie H, Dong X, Wang H, Dong F. The Crystal Plane is not the Key Factor for CO 2 -to-Methane Electrosynthesis on Reconstructed Cu 2 O Microparticles. Angew Chem Int Ed Engl 2021; 61:e202114080. [PMID: 34882934 DOI: 10.1002/anie.202114080] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Indexed: 02/04/2023]
Abstract
Cu2 O microparticles with controllable crystal planes and relatively high stability have been recognized as a good platform to understand the mechanism of the electrocatalytic CO2 reduction reaction (CO2 RR). Herein, we demonstrate that the in situ generated Cu2 O/Cu interface plays a key role in determining the selectivity of methane formation, rather than the initial crystal plane of the reconstructed Cu2 O microparticles. Experimental results indicate that the methane evolution is dominated on all three different crystal planes with similar Tafel slopes and long-term stabilities. Density functional theory (DFT) calculations further reveal that *CO is protonated via a similar bridge configuration at the Cu2 O/Cu interface, regardless of the initial crystal planes of Cu2 O. The Gibbs free energy changes (ΔG) of *CHO on different reconstructed Cu2 O planes are close and more negative than that of *OCCOH, indicating the methane formation is more favorable than ethylene on all Cu2 O crystal planes.
Collapse
Affiliation(s)
- Bangwei Deng
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China.,Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P.R. China
| | - Ming Huang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P.R. China.,School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore, Singapore
| | - Kanglu Li
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, P.R. China
| | - Xiaoli Zhao
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
| | - Qin Geng
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China.,Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P.R. China
| | - Si Chen
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P.R. China
| | - Hongtao Xie
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China.,Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P.R. China
| | - Xing'an Dong
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
| | - Hong Wang
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
| | - Fan Dong
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China.,Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P.R. China
| |
Collapse
|
19
|
Predesign of Catalytically Active Sites via Stable Coordination Cluster Model System for Electroreduction of CO
2
to Ethylene. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Lu YF, Dong LZ, Liu J, Yang RX, Liu JJ, Zhang Y, Zhang L, Wang YR, Li SL, Lan YQ. Predesign of Catalytically Active Sites via Stable Coordination Cluster Model System for Electroreduction of CO 2 to Ethylene. Angew Chem Int Ed Engl 2021; 60:26210-26217. [PMID: 34590413 DOI: 10.1002/anie.202111265] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Indexed: 11/09/2022]
Abstract
Purposefully designing the well-defined catalysts for the selective electroreduction of CO2 to C2 H4 is an extremely important but challenging work. In this work, three crystalline trinuclear copper clusters (Cu3 -X, X=Cl- , Br- , NO3 - ) have been designed, containing three active Cu sites with the identical coordination environment and appropriate spatial distance, delivering high selectivity for the electrocatalytic reduction of CO2 to C2 H4 . The highest faradaic efficiency of Cu3 -X for CO2 -to-C2 H4 conversion can be adjusted from 31.90 % to 55.01 % by simply replacing the counter anions (NO3 - , Cl- , Br- ). The DFT calculation results verify that Cu3 -X can facilitate the C-C coupling of identical *CHO intermediates, subsequently forming molecular symmetrical C2 H4 product. This work provides an important molecular model system and a new design perspective for electroreduction of CO2 to C2 products with symmetrical molecular structure.
Collapse
Affiliation(s)
- Yun-Feng Lu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Long-Zhang Dong
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Jiang Liu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.,School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Ru-Xin Yang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Jing-Jing Liu
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Yu Zhang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Lei Zhang
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Yi-Rong Wang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Shun-Li Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Ya-Qian Lan
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.,School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
21
|
Wang YR, Ding HM, Ma XY, Liu M, Yang YL, Chen Y, Li SL, Lan YQ. Imparting CO 2 Electroreduction Auxiliary for Integrated Morphology Tuning and Performance Boosting in a Porphyrin-based Covalent Organic Framework. Angew Chem Int Ed Engl 2021; 61:e202114648. [PMID: 34806265 DOI: 10.1002/anie.202114648] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Indexed: 11/09/2022]
Abstract
Strategies that enable simultaneous morphology-tuning and electroreduction performance boosting are much desired for the exploration of covalent organic frameworks in efficient CO2 electroreduction. Herein, a kind of functionalizing exfoliation agent has been selected to simultaneously modify and exfoliate bulk COFs into functional nanosheets and investigate their CO2 electroreduction performance. The obtained nanosheets (Cu-Tph-COF-Dct) with large-scale (≈1.0 μm) and ultrathin (≈3.8 nm) morphology enable a superior FECH4 (≈80 %) (almost doubly enhanced than bare COF) with large current-density (-220.0 mA cm-2 ) at -0.9 V. The boosted performance can be ascribed to the immobilized functionalizing exfoliation agent (Dct groups) with integrated amino and triazine groups that strengthen CO2 absorption/activation, stabilize intermediates and enrich the CO concentration around the Cu active sites as revealed by DFT calculations. The point-to-point functionalization strategy for modularly assembling Dct-functionalized COF catalyst for CO2 electroreduction will open up the attractive possibility of developing COFs as efficient CO2 RR electrocatalysts.
Collapse
Affiliation(s)
- Yi-Rong Wang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Hui-Min Ding
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Xiao-Yu Ma
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Ming Liu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yi-Lu Yang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yifa Chen
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Shun-Li Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Ya-Qian Lan
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.,School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|