1
|
Kaplan M, Yavuz O, Ozdemir E, Alcay Y, Kaya K, Yilmaz I. Architecture of Easy-to-Synthesize and Superior Probe Based on Aminoquinoline Appended Naphthoquinone: Instant and On-Site Cu 2+ Ion Quantification in Real Samples and Unusual Crystal Structure and Logic Gate Operations. Inorg Chem 2024; 63:2257-2267. [PMID: 38221778 DOI: 10.1021/acs.inorgchem.3c04229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Easy-to-synthesize aminoquinoline (AQ) appended naphthoquinone (NQ)-based colorimetric and ratiometric probe (AQNQ) was successfully synthesized in one step with high yield and low cost, and was utilized to supply an effective solution to critical shortcomings encountered in Cu2+ analysis. The structure of AQNQ and its interaction with Cu2+ forming an unusual AQNQ-Cu complex were enlightened with single-crystal X-ray diffraction analysis and different spectroscopic methods. AQNQ-Cu complex is the first Cu2+ containing dinuclear crystal where the octahedral coordination sphere is fulfilled through the coordination of a NQ oxygen atom. AQNQ exhibited long-term stability (more than 1 month), superior probe ability toward Cu2+ with quite fast response (30 s), high selectivity among many ions, and limit of detection of 12.13 ppb that is significantly below the highest amount of Cu2+ allowed in drinking water established by both WHO and EPA. Ratiometric determination of Cu2+ using AQNQ was performed with high recovery and low RSD values for drinking water, tap water, lake water, cherry, and watermelon samples. Colorimetric on-site determination including smartphone and paper strip applications, IMPLICATION, and INHIBIT logic gate applications were successfully carried out. The reversibility and reusability of the response to Cu2+ ions with the paper strip application were examined for the first time.
Collapse
Affiliation(s)
- Mehmet Kaplan
- Department of Chemistry, Istanbul Technical University, Istanbul 34469, Maslak, Turkey
| | - Ozgur Yavuz
- Department of Chemistry, Istanbul Technical University, Istanbul 34469, Maslak, Turkey
| | - Emre Ozdemir
- Department of Chemistry, Istanbul Technical University, Istanbul 34469, Maslak, Turkey
| | - Yusuf Alcay
- Department of Chemistry, Istanbul Technical University, Istanbul 34469, Maslak, Turkey
| | - Kerem Kaya
- Department of Chemistry, Istanbul Technical University, Istanbul 34469, Maslak, Turkey
| | - Ismail Yilmaz
- Department of Chemistry, Istanbul Technical University, Istanbul 34469, Maslak, Turkey
| |
Collapse
|
2
|
Duan W, Wang C, Jiang Y, Sui A, Li Z, Wang L, Lei Z, Aime S, Yu J, Li C. A Ratiometric SERS Probe for Imaging the Macrophage Phenotypes in Live Mice with Epilepsy and Brain Tumor. Adv Healthc Mater 2023; 12:e2301000. [PMID: 37580893 DOI: 10.1002/adhm.202301000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/17/2023] [Indexed: 08/16/2023]
Abstract
Macrophage performs multiple functions such as pathogen phagocytosis, antigen presentation, and tissue remodeling by polarizing toward a spectrum of phenotypes. Dynamic imaging of macrophage phenotypes is critical for evaluating disease progression and the therapeutic response of drug candidates. However, current technologies cannot identify macrophage phenotypes in vivo. Herein, a surface-enhanced Raman scattering nanoprobe, AH1, which enables the accurate determination of physiological pH with high sensitivity and tissue penetration depth through ratiometric Raman signals is developed. Due to the phenotype-dependent metabolic reprogramming, AH1 can effectively identify macrophage subpopulations by measuring the acidity levels in phagosomes. After intravenous administration, AH1 not only visualizes the spatial distribution of macrophage phenotypes in brain tumors and epileptic regions of mouse models, but also reveals the repolarization of macrophages in brain lesions after drug intervention. This work provides a new tool for dynamically monitoring the disease-associated immune microenvironment and evaluating the efficacy of immune-therapeutics in vivo.
Collapse
Affiliation(s)
- Wenjia Duan
- Key Laboratory of Smart Drug Delivery, Ministry of Education; Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
- Department of Forensic Toxicology, Academy of Forensic Science, Ministry of Justice, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Shanghai, 200063, China
| | - Cong Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education; Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
- State Key Laboratory of Medical Neurobiology, Zhongshan Hospital, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 201203, China
| | - Yiqing Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education; Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - An Sui
- School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Zhi Li
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Lu Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education; Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Zuhai Lei
- Key Laboratory of Smart Drug Delivery, Ministry of Education; Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Silvio Aime
- Department of Molecular Biotechnologies, Health Sciences Molecular Imaging Center, University of Torino, Torino, 10126, Italy
| | - Jinhua Yu
- School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Cong Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education; Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
- State Key Laboratory of Medical Neurobiology, Zhongshan Hospital, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 201203, China
| |
Collapse
|
3
|
Jin K, Wang W, Qi G, Peng X, Gao H, Zhu H, He X, Zou H, Yang L, Yuan J, Zhang L, Chen H, Qu X. An explainable machine-learning approach for revealing the complex synthesis path-property relationships of nanomaterials. NANOSCALE 2023; 15:15358-15367. [PMID: 37698588 DOI: 10.1039/d3nr02273k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Machine learning (ML) models have recently shown important advantages in predicting nanomaterial properties, which avoids many trial-and-error explorations. However, complex variables that control the formation of nanomaterials exhibiting the desired properties still need to be better understood owing to the low interpretability of ML models and the lack of detailed mechanism information on nanomaterial properties. In this study, we developed a methodology for accurately predicting multiple synthesis parameter-property relationships of nanomaterials to improve the interpretability of the nanomaterial property mechanism. As a proof-of-concept, we designed glutathione-gold nanoclusters (GSH-AuNCs) exhibiting an appropriate fluorescence quantum yield (QY). First, we conducted 189 experiments and synthesized different GSH-AuNCs by varying the thiol-to-metal molar ratio and reaction temperature and time in reasonable ranges. The fluorescence QY of GSH-AuNCs could be systematically and independently programmed using different experimental parameters. We used limited GSH-AuNC synthesis parameter data to train an extreme gradient boosting regressor model. Moreover, we improved the interpretability of the ML model by combining individual conditional expectation, double-variable partial dependence, and feature interaction network analyses. The interpretability analyses established the relationship between multiple synthesis parameters and fluorescence QYs of GSH-AuNCs. The results represent an essential step towards revealing the complex fluorescence mechanism of thiolated AuNCs. Finally, we constructed a synthesis phase diagram exceeding 6.0 × 104 prediction variables for accurately predicting the fluorescence QY of GSH-AuNCs. A multidimensional synthesis phase diagram was obtained for the fluorescence QY of GSH-AuNCs by searching the synthesis parameter space in the trained ML model. Our methodology is a general and powerful complementary strategy for application in material informatics.
Collapse
Affiliation(s)
- Kun Jin
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province and School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China.
| | - Wentao Wang
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province and School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China.
| | - Guangpei Qi
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province and School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China.
| | | | - Haonan Gao
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province and School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China.
| | - Hongjiang Zhu
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province and School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China.
| | - Xin He
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province and School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China.
| | - Haixia Zou
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province and School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China.
| | - Lin Yang
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province and School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China.
| | - Junjie Yuan
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province and School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China.
| | - Liyuan Zhang
- School of Petroleum Engineering, State Key Laboratory of Heavy Oil Processing China University of Petroleum (East China), Qingdao, 266580, China
| | - Hong Chen
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, Fujian 361005, China
| | - Xiangmeng Qu
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province and School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China.
| |
Collapse
|
4
|
Wang K, Zhang R, Zhao X, Ma Y, Ren L, Ren Y, Chen G, Ye D, Wu J, Hu X, Guo Y, Xi R, Meng M, Yao Q, Li P, Chen Q, James TD. Reversible Recognition-Based Boronic Acid Probes for Glucose Detection in Live Cells and Zebrafish. J Am Chem Soc 2023. [PMID: 37023253 PMCID: PMC10119935 DOI: 10.1021/jacs.2c13694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Glucose, a critical source of energy, directly determines the homeostasis of the human body. However, due to the lack of robust imaging probes, the mechanism underlying the changes of glucose homeostasis in the human body remains unclear. Herein, diboronic acid probes with good biocompatibility and high sensitivity were synthesized based on an ortho-aminomethylphenylboronic acid probe, phenyl(di)boronic acid (PDBA). Significantly, by introducing the water-solubilizing group -CN directly opposite the boronic acid group and -COOCH3 or -COOH groups to the β site of the anthracene in PDBA, we obtained the water-soluble probe Mc-CDBA with sensitive response (F/F0 = 47.8, detection limit (LOD) = 1.37 μM) and Ca-CDBA with the highest affinity for glucose (Ka = 4.5 × 103 M-1). On this basis, Mc-CDBA was used to identify glucose heterogeneity between normal and tumor cells. Finally, Mc-CDBA and Ca-CDBA were used for imaging glucose in zebrafish. Our research provides a new strategy for designing efficient boronic acid glucose probes and powerful new tools for the evaluation of glucose-related diseases.
Collapse
Affiliation(s)
- Kai Wang
- Institute of Materia Medica, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, People's Republic of China
- Department of Chemistry, University of Bath, Bath BA2 7AY, U.K
| | - Ruixiao Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| | - Xiujie Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| | - Yan Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| | - Lijuan Ren
- Institute of Materia Medica, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, People's Republic of China
| | - Youxiao Ren
- Institute of Materia Medica, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, People's Republic of China
| | - Gaofei Chen
- Institute of Materia Medica, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, People's Republic of China
| | - Dingming Ye
- Institute of Materia Medica, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, People's Republic of China
| | - Jinfang Wu
- Institute of Materia Medica, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, People's Republic of China
| | - Xinyuan Hu
- Institute of Materia Medica, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, People's Republic of China
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| | - Rimo Xi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| | - Meng Meng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| | - Qingqiang Yao
- Institute of Materia Medica, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, People's Republic of China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Qixin Chen
- Institute of Materia Medica, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, People's Republic of China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA2 7AY, U.K
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, People's Republic of China
| |
Collapse
|
5
|
Da Y, Luo S, Tian Y. Real-Time Monitoring of Neurotransmitters in the Brain of Living Animals. ACS APPLIED MATERIALS & INTERFACES 2023; 15:138-157. [PMID: 35394736 DOI: 10.1021/acsami.2c02740] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Neurotransmitters, as important chemical small molecules, perform the function of neural signal transmission from cell to cell. Excess concentrations of neurotransmitters are often closely associated with brain diseases, such as Alzheimer's disease, depression, schizophrenia, and Parkinson's disease. On the other hand, the release of neurotransmitters under the induced stimulation indicates the occurrence of reward-related behaviors, including food and drug addiction. Therefore, to understand the physiological and pathological functions of neurotransmitters, especially in complex environments of the living brain, it is urgent to develop effective tools to monitor their dynamics with high sensitivity and specificity. Over the past 30 years, significant advances in electrochemical sensors and optical probes have brought new possibilities for studying neurons and neural circuits by monitoring the changes in neurotransmitters. This Review focuses on the progress in the construction of sensors for in vivo analysis of neurotransmitters in the brain and summarizes current attempts to address key issues in the development of sensors with high selectivity, sensitivity, and stability. Combined with the latest advances in technologies and methods, several strategies for sensor construction are provided for recording chemical signal changes in the complex environment of the brain.
Collapse
Affiliation(s)
- Yifan Da
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Shihua Luo
- Department of Traumatology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| |
Collapse
|
6
|
Dong H, Wang M, Zhao L, Yan M, Zhang H, Qiu S, Shan M, Song Y, Dong X, Zhou Y, Zhang Y, Xu M. Red-emitting carbon dots aggregates-based fluorescent probe for monitoring Cu 2. Mikrochim Acta 2022; 190:12. [PMID: 36478524 DOI: 10.1007/s00604-022-05543-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/17/2022] [Indexed: 12/12/2022]
Abstract
R-CDAs have been synthesized in a one-pot solvothermal procedure starting from 3,4-diaminobenzoic acid in an acidic medium. Transmission electron microscopy (TEM) revealed that R-CDAs nanoparticles exhibited a much larger diameter of 7.2-28.8 nm than traditional monodisperse carbon dots. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR) revealed the presence of polar functional groups (hydroxyl, amino, carboxyl) on the surface of R-CDAs. Upon excitation with visible light (550 nm), R-CDAs emit stable, red fluorescence with a maximum at 610 nm. Under the optimum conditions, Cu2+ ions quench the fluorescence of this probe, and the signal is linear in a concentration range of copper ions between 5 and 600 nM with the detection limit of only 0.4 nM. Recoveries from 98.0 to 105.0% and relative standard deviations (RSD) from 2.8 to 4.5% have been obtained for detection of Cu2+ in real water samples. Furthermore, the R-CDAs fluorescent probe showed negligible cytotoxicity toward HeLa cells and good bioimaging ability, suggesting its potential applicability as a diagnostic tool in biomedicine.
Collapse
Affiliation(s)
- Hui Dong
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, China
| | - Meng Wang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Le Zhao
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, China
| | - Minmin Yan
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Hanbing Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, China
| | - Shiyi Qiu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, China
| | - Mengxin Shan
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, China
| | - Yiwen Song
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, China
| | - Xintong Dong
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, China
| | - Yanli Zhou
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, China
| | - Yintang Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, China. .,Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, China.,Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
7
|
Shi L, Liu M, Zhang L, Tian Y. A Liquid Interfacial SERS Platform on a Nanoparticle Array Stabilized by Rigid Probes for the Quantification of Norepinephrine in Rat Brain Microdialysates. Angew Chem Int Ed Engl 2022; 61:e202117125. [PMID: 35238468 DOI: 10.1002/anie.202117125] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Indexed: 12/31/2022]
Abstract
For the reliable determination of trace chemicals in the brain, we created a SERS platform based on a functionalized AuNPs array formed at a liquid/liquid interface in a uniform fashion over a large substrate area through ternary regulations for real-time quantification of trace norepinephrine (NE). The rigid molecule, 4-(thiophen-3-ylethynyl)-benzaldehyde (RP1) was designed and co-assembled at AuNPs with 4-mercaptophenylboronic acid (MPBA) to chemically define NE via dual recognition. Meanwhile, the rigid structure assembly of RP1 and MPBA efficiently fixed the interparticle gap, guaranteeing reproducible SERS analysis. Furthermore, the Raman peak of C≡C group in the silent region was taken as a response element to further improve the accuracy. Combined with microdialysis, this SERS platform was developed for in-the-field testing of NE in rat brain microdialysates following anxiety.
Collapse
Affiliation(s)
- Lu Shi
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Mengmeng Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Limin Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| |
Collapse
|
8
|
Shi L, Liu M, Zhang L, Tian Y. A Liquid Interfacial SERS Platform on a Nanoparticle Array Stabilized by Rigid Probes for the Quantification of Norepinephrine in Rat Brain Microdialysates. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lu Shi
- East China Normal University School of Chemistry and Molecular Engineering Dongchuan Road 500 201100 shanghai CHINA
| | - Mengmeng Liu
- East China Normal University School of Chemistry and Molecular Engineering Dongchuan Road 500 shanghai CHINA
| | - Limin Zhang
- East China Normal University School of Chemistry and Molecular Engineering Dongchuan Road 500 201100 shanghai CHINA
| | - Yang Tian
- East China Normal University Dept. of Chemistry Dongchuan Road 500 200062 Shanghai CHINA
| |
Collapse
|