1
|
Shen Y, Li S, Qi R, Wu C, Yang M, Wang J, Cai Z, Liu K, Yue J, Guan B, Han Y, Wang S, Wang Y. Assembly of Hexagonal Column Interpenetrated Spheres from Plant Polyphenol/Cationic Surfactants and Their Application as Antimicrobial Molecular Banks. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202110938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Yutan Shen
- Department CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Shikun Li
- University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Ruilian Qi
- Department CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Chunxian Wu
- School of Chemistry and chemical Engineering Guangdong Pharmaceutical University Guangzhou 510006 P. R. China
| | - Ming Yang
- Department CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Jie Wang
- Department CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Zhuojun Cai
- Department CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Kaiang Liu
- Department CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Jiling Yue
- Department CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Bo Guan
- Department CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yuchun Han
- Department CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Shu Wang
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Research/ Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yilin Wang
- Department CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100190 P. R. China
| |
Collapse
|
2
|
Shen Y, Li S, Qi R, Wu C, Yang M, Wang J, Cai Z, Liu K, Yue J, Guan B, Han Y, Wang S, Wang Y. Assembly of Hexagonal Column Interpenetrated Spheres from Plant Polyphenol/Cationic Surfactants and Their Application as Antimicrobial Molecular Banks. Angew Chem Int Ed Engl 2021; 61:e202110938. [PMID: 34791775 DOI: 10.1002/anie.202110938] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Indexed: 11/08/2022]
Abstract
Microbial infections has become a great threat to human health and one of the main risks arises from direct contact with the surfaces contaminated by pathogenic microbes. Developing long-lasting antimicrobial materials becomes an urgent need. Herein, a kind of hexagonal column interpenetrated spheres (HCISs) are fabricated by non-covalent assembly of plant gallic acid with quaternary ammonium surfactants. Different from one-time burst release of conventional antimicrobial agents, the HCIS acts like a "antimicrobial molecular bank" and releases the antimicrobial ingredients in a multistage way, leading to long-lasting antimicrobial performance. Taking advantage of strong hydrophobicity and adhesion, HCISs are applicable to various substrates and endowed with anti-water washing property, thus showing high in vitro antimicrobial efficiency ( > 99 %) even after being used for 10 cycles. Meanwhile, HCISs exhibit broad-spectrum antimicrobial activity against bacteria and fungi, and have good biocompatibility with mammalian cells. Such a low-cost and portable long-lasting antimicrobial agent meets the growing anti-infection demand in public spaces.
Collapse
Affiliation(s)
- Yutan Shen
- Institute of Chemistry Chinese Academy of Sciences, Key Laboratory of Colloid, Interface and Chemical Thermodynamics, 100190, Beijing, CHINA
| | - Shikun Li
- Chinese Academy of Sciences, University of Chinese Academy of Sciences, CHINA
| | - Ruilian Qi
- Institute of Chemistry Chinese Academy of Sciences, Key Laboratory of Colloid, Interface and Chemical Thermodynamics, 100190, Beijing, CHINA
| | - Chunxian Wu
- Guangdong Pharmaceutical University, School of Chemistry and Chemical Engineering, 510006, Guangzhou, CHINA
| | - Ming Yang
- Institute of Chemistry Chinese Academy of Sciences, Key Laboratory of Colloid, Interface and Chemical Thermodynamics, 100190, Beijing, CHINA
| | - Jie Wang
- Institute of Chemistry Chinese Academy of Sciences, Key Laboratory of Colloid, Interface and Chemical Thermodynamic, 100190, Beijing, CHINA
| | - Zhuojun Cai
- Institute of Chemistry Chinese Academy of Sciences, Key Laboratory of Colloid, Interface and Chemical Thermodynamics, 100190, Beijing, CHINA
| | - Kaiang Liu
- Chinese Academy of Sciences, Institute of Chemistry, 100190, Beijing, CHINA
| | - Jiling Yue
- Chinese Academy of Sciences, Institute of Chemistry, 100190, Beijing, CHINA
| | - Bo Guan
- Chinese Academy of Sciences, Institute of Chemistry, 100190, Beijing, CHINA
| | - Yuchun Han
- Institute of Chemistry Chinese Academy of Sciences, Key Laboratory of Colloid, Interface and Chemical Thermodynamics, 100190, Beijing, CHINA
| | - Shu Wang
- Institute of Chemistry Chinese Academy of Sciences, Key laboratory of organic solids, 100190, Beijing, CHINA
| | - Yilin Wang
- Chinese Academy of Sciences, Key Laboratory of Colloid and Interface Science, Institute of Chemistry, Zhongguancun, 100190, Beijing, CHINA
| |
Collapse
|