Panther LA, Guest DP, McGown A, Emerit H, Tareque RK, Jose A, Dadswell CM, Coles SJ, Tizzard GJ, González‐Méndez R, Goodall CAI, Bagley MC, Spencer J, Greenland BW. Solvent‐Free Synthesis of Core‐Functionalised Naphthalene Diimides by Using a Vibratory Ball Mill: Suzuki, Sonogashira and Buchwald–Hartwig Reactions.
Chemistry 2022;
28:e202201444. [PMID:
35621283 PMCID:
PMC9544761 DOI:
10.1002/chem.202201444]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Indexed: 11/07/2022]
Abstract
Solvent‐free synthesis by using a vibratory ball mill (VBM) offers the chance to access new chemical reactivity, whilst reducing solvent waste and minimising reaction times. Herein, we report the core functionalisation of N,N’‐bis(2‐ethylhexyl)‐2,6‐dibromo‐1,4,5,8‐naphthalenetetracarboxylic acid (Br2‐NDI) by using Suzuki, Sonogashira and Buchwald–Hartwig coupling reactions. The products of these reactions are important building blocks in many areas of organic electronics including organic light‐emitting diodes (OLEDs), organic field‐effect transistors (OFETs) and organic photovoltaic cells (OPVCs). The reactions proceed in as little as 1 h, use commercially available palladium sources (frequently Pd(OAc)2) and are tolerant to air and atmospheric moisture. Furthermore, the real‐world potential of this green VBM protocol is demonstrated by the double Suzuki coupling of a monobromo(NDI) residue to a bis(thiophene) pinacol ester. The resulting dimeric NDI species has been demonstrated to behave as an electron acceptor in functioning OPVCs.
Collapse