Tse Sum Bui B, Auroy T, Haupt K. Fighting Antibiotic-Resistant Bacteria : Promising Strategies Orchestrated by Molecularly Imprinted Polymers.
Angew Chem Int Ed Engl 2021;
61:e202106493. [PMID:
34779567 DOI:
10.1002/anie.202106493]
[Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Indexed: 11/09/2022]
Abstract
Infections caused by antibiotic-resistant bacteria are difficult and sometimes impossible to treat, making them one of the major public health problems of our time. We highlight how one unique material , molecularly imprinted polymers (MIPs), can orchestrate several strategies to fight this major societal issue. MIPs are tailor-made biomimetic supramolecular receptors that recognize and bind target molecules with a high affinity and selectivity, comparable to those of antibodies. While research on MIPs for combatting cancer has been constantly flourishing, comprehensive work on their involvement in combatting resistant superbugs has been rather scarce. This review aims at filling this gap. We will describe what are the causes of bacterial resistance and at which level MIPs can deploy their weapons. MIPs' targets can be biofilm constituents, quorum sensing messengers, bacterial surface proteins and antibiotic-deactivating enzymes, among others. We will conclude on the current challenges and future developments in this field.
Collapse