1
|
Lu Z, Yang H, Guo Y, He P, Wu S, Yang Q, Zhou H. Electrolyte Sieving Chemistry in Suppressing Gas Evolution of Sodium‐Metal Batteries. Angew Chem Int Ed Engl 2022; 61:e202206340. [DOI: 10.1002/anie.202206340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Ziyang Lu
- Graduate School of System and Information Engineering University of Tsukuba 1-1-1, Tennoudai Tsukuba 305-8573 Japan
- Nanoyang Group State Key Laboratory of Chemical Engineering School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
| | - Huijun Yang
- Graduate School of System and Information Engineering University of Tsukuba 1-1-1, Tennoudai Tsukuba 305-8573 Japan
| | - Yong Guo
- Nanoyang Group State Key Laboratory of Chemical Engineering School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
| | - Ping He
- Center of Energy Storage Materials & Technology College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials National Laboratory of Solid State Micro-structures and Collaborative Innovation Center of Advanced Micro-structures Nanjing University Nanjing 210093 P. R. China
| | - Shichao Wu
- Nanoyang Group State Key Laboratory of Chemical Engineering School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
| | - Quan‐Hong Yang
- Nanoyang Group State Key Laboratory of Chemical Engineering School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
| | - Haoshen Zhou
- Graduate School of System and Information Engineering University of Tsukuba 1-1-1, Tennoudai Tsukuba 305-8573 Japan
- Center of Energy Storage Materials & Technology College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials National Laboratory of Solid State Micro-structures and Collaborative Innovation Center of Advanced Micro-structures Nanjing University Nanjing 210093 P. R. China
| |
Collapse
|
2
|
Lu Z, Yang H, Guo Y, He P, Wu S, Yang QH, Zhou H. Electrolyte Sieving Chemistry in Suppressing Gas Evolution of Sodium Metal Batteries. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ziyang Lu
- University of Tsukuba: Tsukuba Daigaku Department of Energy Science and Engineering JAPAN
| | - Huijun Yang
- University of Tsukuba: Tsukuba Daigaku Department of Energy Science and Engineering JAPAN
| | - Yong Guo
- Tianjin University School of Materials Science and Engineering school of Materials Science and Engineering CHINA
| | - Ping He
- Nanjing University Department of Energy Science and Engineering CHINA
| | - Shichao Wu
- Tianjin University School of Materials Science and Engineering school of Materials Science and Engineering CHINA
| | - Quan-Hong Yang
- Tianjin University School of Materials Science and Engineering school of Materials Science and Engineering CHINA
| | | |
Collapse
|
3
|
Li X, Feng S, Zhao M, Zhao C, Chen X, Li B, Huang J, Zhang Q. Surface Gelation on Disulfide Electrocatalysts in Lithium–Sulfur Batteries. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xi‐Yao Li
- Department of Chemical Engineering Tsinghua University Beijing 100084 P.R. China
| | - Shuai Feng
- College of Chemistry and Chemical Engineering Taishan University Shandong 271021 P.R. China
| | - Meng Zhao
- School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 P.R. China
- Advanced Research Institute of Multidisciplinary Science Beijing Institute of Technology Beijing 100081 P.R. China
| | - Chang‐Xin Zhao
- Department of Chemical Engineering Tsinghua University Beijing 100084 P.R. China
| | - Xiang Chen
- Department of Chemical Engineering Tsinghua University Beijing 100084 P.R. China
| | - Bo‐Quan Li
- School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 P.R. China
- Advanced Research Institute of Multidisciplinary Science Beijing Institute of Technology Beijing 100081 P.R. China
| | - Jia‐Qi Huang
- School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 P.R. China
- Advanced Research Institute of Multidisciplinary Science Beijing Institute of Technology Beijing 100081 P.R. China
| | - Qiang Zhang
- Department of Chemical Engineering Tsinghua University Beijing 100084 P.R. China
| |
Collapse
|
4
|
Liang H, Gu Z, Zhao X, Guo J, Yang J, Li W, Li B, Liu Z, Li W, Wu X. Ether‐Based Electrolyte Chemistry Towards High‐Voltage and Long‐Life Na‐Ion Full Batteries. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112550] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hao‐Jie Liang
- MOE Key Laboratory for UV Light-Emitting Materials and Technology Northeast Normal University Changchun Jilin 130024 P. R. China
| | - Zhen‐Yi Gu
- MOE Key Laboratory for UV Light-Emitting Materials and Technology Northeast Normal University Changchun Jilin 130024 P. R. China
| | - Xin‐Xin Zhao
- Department of Chemistry Northeast Normal University Changchun Jilin 130024 P. R. China
| | - Jin‐Zhi Guo
- MOE Key Laboratory for UV Light-Emitting Materials and Technology Northeast Normal University Changchun Jilin 130024 P. R. China
| | - Jia‐Lin Yang
- MOE Key Laboratory for UV Light-Emitting Materials and Technology Northeast Normal University Changchun Jilin 130024 P. R. China
| | - Wen‐Hao Li
- MOE Key Laboratory for UV Light-Emitting Materials and Technology Northeast Normal University Changchun Jilin 130024 P. R. China
| | - Bao Li
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Zhi‐Ming Liu
- Qingdao University of Science and Technology Qingdao Shandong 260061 China
| | - Wen‐Liang Li
- Department of Chemistry Northeast Normal University Changchun Jilin 130024 P. R. China
| | - Xing‐Long Wu
- MOE Key Laboratory for UV Light-Emitting Materials and Technology Northeast Normal University Changchun Jilin 130024 P. R. China
- Department of Chemistry Northeast Normal University Changchun Jilin 130024 P. R. China
| |
Collapse
|
5
|
Liang HJ, Gu ZY, Zhao XX, Guo JZ, Yang JL, Li WH, Li B, Liu ZM, Li WL, Wu XL. Ether-Based Electrolyte Chemistry Towards High-Voltage and Long-Life Na-Ion Full Batteries. Angew Chem Int Ed Engl 2021; 60:26837-26846. [PMID: 34636126 DOI: 10.1002/anie.202112550] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Indexed: 11/06/2022]
Abstract
Although ether-based electrolytes have been extensively applied in anode evaluation of batteries, anodic instability arising from solvent oxidability is always a tremendous obstacle to matching with high-voltage cathodes. Herein, by rational design for solvation configuration, the fully coordinated ether-based electrolyte with strong resistance against oxidation is reported, which remains anodically stable with high-voltage Na3 V2 (PO4 )2 O2 F (NVPF) cathode under 4.5 V (versus Na+ /Na) protected by an effective interphase. The assembled graphite//NVPF full cells display superior rate performance and unprecedented cycling stability. Beyond that, the constructed full cells coupling the high-voltage NVPF cathode with hard carbon anode exhibit outstanding electrochemical performances in terms of high average output voltage up to 3.72 V, long-term cycle life (such as 95 % capacity retention after 700 cycles) and high energy density (247 Wh kg-1 ). In short, the optimized ether-based electrolyte enriches systematic options, the ability to maintain oxidative stability and compatibility with various anodes, exhibiting attractive prospects for application.
Collapse
Affiliation(s)
- Hao-Jie Liang
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Zhen-Yi Gu
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Xin-Xin Zhao
- Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Jin-Zhi Guo
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Jia-Lin Yang
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Wen-Hao Li
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Bao Li
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Zhi-Ming Liu
- Qingdao University of Science and Technology, Qingdao, Shandong, 260061, China
| | - Wen-Liang Li
- Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Xing-Long Wu
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin, 130024, P. R. China.,Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| |
Collapse
|
6
|
Li XY, Feng S, Zhao M, Zhao CX, Chen X, Li BQ, Huang JQ, Zhang Q. Surface Gelation on Disulfide Electrocatalysts in Lithium-Sulfur Batteries. Angew Chem Int Ed Engl 2021; 61:e202114671. [PMID: 34889012 DOI: 10.1002/anie.202114671] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Indexed: 11/06/2022]
Abstract
Lithium-sulfur (Li-S) batteries are deemed as future energy storage devices due to ultrahigh theoretical energy density. Cathodic polysulfide electrocatalysts have been widely investigated to promote sluggish sulfur redox kinetics. Probing the surface structure of electrocatalysts is vital to understanding the mechanism of polysulfide electrocatalysis. In this work, we for the first time identify surface gelation on disulfide electrocatalysts. Concretely, the Lewis acid sites on disulfides trigger the ring-opening polymerization of the dioxolane solvent to generate a surface gel layer, covering disulfides and reducing the electrocatalytic activity. Accordingly, a Lewis base triethylamine (TEA) is introduced as a competitive inhibitor. Consequently, Li-S batteries with disulfide electrocatalysts and TEA afford high specific capacity and improved rate responses. This work affords new insights on the actual surface structure of electrocatalysts in Li-S batteries.
Collapse
Affiliation(s)
- Xi-Yao Li
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Shuai Feng
- College of Chemistry and Chemical Engineering, Taishan University, Shandong, 271021, P.R. China
| | - Meng Zhao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P.R. China.,Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Chang-Xin Zhao
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Xiang Chen
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Bo-Quan Li
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P.R. China.,Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Jia-Qi Huang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P.R. China.,Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Qiang Zhang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P.R. China
| |
Collapse
|