1
|
Xu J, Chang L, Wei Y, Wei J, Cui W, Tao Y, Gan L. Size-Dependent Core-Shell Fine Structures and Oxygen Evolution Activity of Electrochemical IrO x Nanoparticles Revealed by Cryogenic Electron Microscopy. ACS NANO 2024; 18:29140-29151. [PMID: 39377298 DOI: 10.1021/acsnano.4c10657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Electrochemically oxidized amorphous iridium oxides (IrOx) offer significantly improved electrocatalytic activities on the oxygen evolution reaction (OER) compared to crystalline IrO2, yet the origin of their decent activity and their size-dependent properties have not been fully understood. An important argument is the formation of deprotonated oxygen species not only at the topmost surface but also at the near surface, which creates an electrophilic character that activates the OER electrocatalysis. However, high spatial resolution identification of the electrophilic oxygen species remains unachieved. We address this hitherto-unresolved problem on size-selected electrochemical IrOx nanoparticles (NPs) by using cryogenic scanning transmission electron microscopy combined with electron energy loss spectroscopy, which enables simultaneous atomic detection of the near surface compositional and electronic structures with minimal damage that are further correlated with their size-dependent OER activities. Depending on the particle size, the electrochemical IrOx NPs showed distinctly different core-shell fine structures ranging from amorphous and hydrous IrOxHy NPs to a "metallic Ir core/sub-stoichiometric IrOx interlayer/amorphous IrOxHy shell" NP structure. Moreover, the formation of deprotonated, electrophilic oxygen is directly identified at the substoichiometric IrOx interface layer. These features account for a previously unestablished particle size effect of the electrochemical IrOx NPs, showing increasing water oxidation reactivity with an increasing nanoparticle size. Our results provide important insights into how subsurface oxygen chemistry controls the surface reactivity in the nanoscale Ir-based OER electrocatalysts.
Collapse
Affiliation(s)
- Jingbo Xu
- Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Liang Chang
- Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Yinping Wei
- Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Jie Wei
- Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Wenting Cui
- Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Ying Tao
- Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Lin Gan
- Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| |
Collapse
|
2
|
Li X, Zhang H, Hu Q, Zhou W, Shao J, Jiang X, Feng C, Yang H, He C. Amorphous NiFe Oxide-based Nanoreactors for Efficient Electrocatalytic Water Oxidation. Angew Chem Int Ed Engl 2023; 62:e202300478. [PMID: 36789622 DOI: 10.1002/anie.202300478] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Synergy engineering is an important way to enhance the kinetic activity of oxygen-evolution-reaction (OER) electrocatalysts. Here, we fabricated NiFe amorphous nanoreactor (NiFe-ANR) oxide as OER electrocatalysts via a mild self-catalytic reaction. Firstly, the amorphousness helps transform NiFe-ANR into highly active hydroxyhydroxides, and its many fine-grain boundaries increase active sites. More importantly, as proved by experiments and finite element analysis, the nanoreactor structure alters the spatial curvature and the mass transfer over the catalyst, thereby enriching OH- in the catalyst surface and inner part. Thus, the catalyst with the structure of amorphous nanoreactors gained excellent activity, far superior to the NiFe catalyst with the structure of crystalline nanoreactor or amorphous non-nanoreactor. This work provides new insights into the applications and mechanisms of amorphousness and nanoreactors, embodying the "1+1>2" synergy of crystalline state and morphology.
Collapse
Affiliation(s)
- Xiaojie Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China.,Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Huike Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Qi Hu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Weiliang Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Jiaxin Shao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Xingxing Jiang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China.,Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Chao Feng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China.,Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Hengpan Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Chuanxin He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| |
Collapse
|
3
|
Podboršek GK, Kamšek AR, Lončar A, Bele M, Suhadolnik L, Jovanovič P, Hodnik N. Atomically-resolved structural changes of ceramic supported nanoparticulate oxygen evolution reaction Ir catalyst. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Lončar A, Escalera‐López D, Cherevko S, Hodnik N. Inter-relationships between Oxygen Evolution and Iridium Dissolution Mechanisms. Angew Chem Int Ed Engl 2022; 61:e202114437. [PMID: 34942052 PMCID: PMC9305877 DOI: 10.1002/anie.202114437] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Indexed: 11/08/2022]
Abstract
The widespread utilization of proton exchange membrane (PEM) electrolyzers currently remains uncertain, as they rely on the use of highly scarce iridium as the only viable catalyst for the oxygen evolution reaction (OER), which is known to present the major energy losses of the process. Understanding the mechanistic origin of the different activities and stabilities of Ir-based catalysts is, therefore, crucial for a scale-up of green hydrogen production. It is known that structure influences the dissolution, which is the main degradation mechanism and shares common intermediates with the OER. In this Minireview, the state-of-the-art understanding of dissolution and its relationship with the structure of different iridium catalysts is gathered and correlated to different mechanisms of the OER. A perspective on future directions of investigation is also given.
Collapse
Affiliation(s)
- Anja Lončar
- Laboratory for ElectrocatalysisDepartment of Materials ChemistryNational Institute of ChemistryHajdrihova 191000LjubljanaSlovenia
- University of Nova GoricaVipavska 135000Nova GoricaSlovenia
| | - Daniel Escalera‐López
- Helmholtz-Institute Erlangen-Nürnberg for Renewable EnergyForschungszentrum JülichCauerstrasse 191058ErlangenGermany
| | - Serhiy Cherevko
- Helmholtz-Institute Erlangen-Nürnberg for Renewable EnergyForschungszentrum JülichCauerstrasse 191058ErlangenGermany
| | - Nejc Hodnik
- Laboratory for ElectrocatalysisDepartment of Materials ChemistryNational Institute of ChemistryHajdrihova 191000LjubljanaSlovenia
- University of Nova GoricaVipavska 135000Nova GoricaSlovenia
| |
Collapse
|
5
|
Lončar A, Escalera‐López D, Cherevko S, Hodnik N. Inter‐relationships between Oxygen Evolution and Iridium Dissolution Mechanisms. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anja Lončar
- Laboratory for Electrocatalysis Department of Materials Chemistry National Institute of Chemistry Hajdrihova 19 1000 Ljubljana Slovenia
- University of Nova Gorica Vipavska 13 5000 Nova Gorica Slovenia
| | - Daniel Escalera‐López
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy Forschungszentrum Jülich Cauerstrasse 1 91058 Erlangen Germany
| | - Serhiy Cherevko
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy Forschungszentrum Jülich Cauerstrasse 1 91058 Erlangen Germany
| | - Nejc Hodnik
- Laboratory for Electrocatalysis Department of Materials Chemistry National Institute of Chemistry Hajdrihova 19 1000 Ljubljana Slovenia
- University of Nova Gorica Vipavska 13 5000 Nova Gorica Slovenia
| |
Collapse
|