Nowak BP, Schlichter L, Ravoo BJ. Mediating Oxidation of Thioethers with Iodine—A Mild and Versatile Pathway to Trigger the Formation of Peptide Hydrogels.
Angew Chem Int Ed Engl 2022;
61:e202201791. [PMID:
35274796 PMCID:
PMC9314045 DOI:
10.1002/anie.202201791]
[Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Indexed: 12/03/2022]
Abstract
The development of redox‐triggerable peptide hydrogels poses fundamental challenges, since the highly specific peptide architectures required inevitably limit the versatility of such materials. A powerful, yet rarely applied approach to bypass those barriers is the application of a mediating redox reaction to gradually decrease the pH during hydrogel formation. We report a versatile strategy to trigger the formation of peptide hydrogels from readily accessible acid‐triggerable gelators by generating protons by oxidation of thioethers with triiodide. Adding thiodiglycol as a readily available thioether auxiliary to the basic precursor solution of a peptide gelator efficiently yielded hydrogels after mixing with triiodide, as studied in detail for Nap‐FF and demonstrated for other peptides. Furthermore, incorporation of the thioether moiety in the gelator backbone via the amino acid methionine, as shown for the tailormade Nap‐FMDM peptide, reduces the number of required additives.
Collapse