1
|
Collado L, Pizarro AH, Barawi M, García-Tecedor M, Liras M, de la Peña O'Shea VA. Light-driven nitrogen fixation routes for green ammonia production. Chem Soc Rev 2024. [PMID: 39387285 DOI: 10.1039/d3cs01075a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The global goal for decarbonization of the energy sector and the chemical industry could become a reality by a massive increase in renewable-based technologies. For this clean energy transition, the versatile green ammonia may play a key role in the future as a fossil-free fertilizer, long-term energy storage medium, chemical feedstock, and clean burning fuel for transportation and decentralized power generation. The high energy-intensive industrial ammonia production has triggered researchers to look for a step change in new synthetic approaches powered by renewable energies. This review provides a comprehensive comparison of light-mediated N2 fixation technologies for green ammonia production, including photocatalytic, photoelectrocatalytic, PV-electrocatalytic and photothermocatalytic routes. Since these approaches are still at laboratory scale, we examine the most recent developments and discuss the open challenges for future improvements. Last, we offer a technoeconomic comparison of current and emerging ammonia production technologies, highlighting costs, barriers, recommendations, and potential opportunities for the real development of the next generation of green ammonia solutions.
Collapse
Affiliation(s)
- Laura Collado
- Photoactivated Processes Unit, IMDEA Energy Institute, Móstoles, Madrid 28935, Spain.
| | - Alejandro H Pizarro
- Photoactivated Processes Unit, IMDEA Energy Institute, Móstoles, Madrid 28935, Spain.
| | - Mariam Barawi
- Photoactivated Processes Unit, IMDEA Energy Institute, Móstoles, Madrid 28935, Spain.
| | - Miguel García-Tecedor
- Photoactivated Processes Unit, IMDEA Energy Institute, Móstoles, Madrid 28935, Spain.
| | - Marta Liras
- Photoactivated Processes Unit, IMDEA Energy Institute, Móstoles, Madrid 28935, Spain.
| | | |
Collapse
|
2
|
Paul S, Sarkar S, Dolui D, Sarkar D, Robert M, Ghorai UK. 1D/2D interface engineering of a CoPc-C 3N 4 heterostructure for boosting the nitrogen reduction reaction to NH 3. Dalton Trans 2023; 52:15360-15364. [PMID: 37740280 DOI: 10.1039/d3dt01790g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Herein, we demonstrate the construction of a 1D/2D heterostructure of cobalt phthalocyanine (CoPc)-carbon nitride (C3N4) for electrochemical N2 reduction to NH3. Improved performance originates from the higher exposure of active surface sites. The electrochemical NRR performance showed an NH3 formation rate of 423.8 μg h-1 mgcat-1, a high faradaic efficiency (FE) of 33%, and stability for 20 h. This study provides a new strategy for designing a highly efficient 1D/2D electrocatalytic system for ammonia synthesis.
Collapse
Affiliation(s)
- Sourav Paul
- Department of Industrial Chemistry and Applied Chemistry, Swami Vivekananda Research Center, Ramakrishna Mission Vidyamandira, Belur Math, Howrah-711202, West Bengal, India.
| | - Sougata Sarkar
- Department of Industrial Chemistry and Applied Chemistry, Swami Vivekananda Research Center, Ramakrishna Mission Vidyamandira, Belur Math, Howrah-711202, West Bengal, India.
| | - Dependu Dolui
- Université Paris Cité, Laboratoire d'Electrochimie Moléculaire, CNRS, F-75006 Paris, France
| | - Debashrita Sarkar
- Université Paris Cité, Laboratoire d'Electrochimie Moléculaire, CNRS, F-75006 Paris, France
| | - Marc Robert
- Université Paris Cité, Laboratoire d'Electrochimie Moléculaire, CNRS, F-75006 Paris, France
- Institut Universitaire de France (IUF), F-75005 Paris, France
| | - Uttam Kumar Ghorai
- Department of Industrial Chemistry and Applied Chemistry, Swami Vivekananda Research Center, Ramakrishna Mission Vidyamandira, Belur Math, Howrah-711202, West Bengal, India.
| |
Collapse
|
3
|
Zhang W, Liu T, Tan Q, Li J, Ma Y, He Y, Han D, Qin D, Niu L. Atomically Precise Dinuclear Ni 2 Active Site-Modified MOF-Derived ZnO@NC Heterojunction toward High-Performance N 2 Photofixation. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Wensheng Zhang
- School of Civil Engineering c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangzhou University, Guangzhou 510006, P. R. China
| | - Tianren Liu
- School of Civil Engineering c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangzhou University, Guangzhou 510006, P. R. China
| | - Qingmei Tan
- School of Civil Engineering c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangzhou University, Guangzhou 510006, P. R. China
| | - Jianshen Li
- School of Civil Engineering c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yuangong Ma
- School of Civil Engineering c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangzhou University, Guangzhou 510006, P. R. China
| | - Ying He
- School of Civil Engineering c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangzhou University, Guangzhou 510006, P. R. China
| | - Dongxue Han
- School of Civil Engineering c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangzhou University, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Anti-Drug Technology Center of Guangdong Province, Guangzhou 510230, P. R. China
| | - Dongdong Qin
- School of Civil Engineering c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangzhou University, Guangzhou 510006, P. R. China
| | - Li Niu
- School of Civil Engineering c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangzhou University, Guangzhou 510006, P. R. China
| |
Collapse
|
4
|
Li D, Xu N, Zhao Y, Zhou C, Zhang LP, Wu LZ, Zhang T. A Reliable and Precise Protocol for Urea Quantification in Photo/Electrocatalysis. SMALL METHODS 2022; 6:e2200561. [PMID: 35789080 DOI: 10.1002/smtd.202200561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/08/2022] [Indexed: 06/15/2023]
Abstract
To comply with the trend toward green and sustainable development of the fine chemical industry, multitudinous promising technologies (e.g., photocatalysis and electrocatalysis) are beginning to dabble in the green synthesis of fine chemicals, particularly urea synthesis. Whilst numerous advances are made in mechanistic understanding, the low yield reported so far also imposes more stringent requirements on the reliability and anti-interference of the detection method. Herein, the applicability of frequently used methods for urea quantification is methodically compared. In terms of the experimental results, a precise and methodical protocol for urea quantification or evaluation in photo/electrocatalysis is explored and established, with emphasis on screening quantitative methods under specific conditions and indispensable isotopic tracing experiments. The budding urea photo/electrosynthesis urgently demands a rigorous protocol, including the rapid isotopic identification and evaluation criteria, capable of promoting healthy development in the future.
Collapse
Affiliation(s)
- Dong Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ning Xu
- School of Life Science, Tsinghua University, Beijing, 100084, P. R. China
| | - Yunxuan Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Chao Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Li-Ping Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
5
|
Zhao Y, Miao Y, Zhou C, Zhang T. Artificial photocatalytic nitrogen fixation: Where are we now? Where is its future? MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|