1
|
Li K, Li X, Li L, Chang X, Wu S, Yang C, Song X, Zhao ZJ, Gong J. Nature of Catalytic Behavior of Cobalt Oxides for CO 2 Hydrogenation. JACS AU 2023; 3:508-515. [PMID: 36873681 PMCID: PMC9975827 DOI: 10.1021/jacsau.2c00632] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/01/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Cobalt oxide (CoO x ) catalysts are widely applied in CO2 hydrogenation but suffer from structural evolution during the reaction. This paper describes the complicated structure-performance relationship under reaction conditions. An iterative approach was employed to simulate the reduction process with the help of neural network potential-accelerated molecular dynamics. Based on the reduced models of catalysts, a combined theoretical and experimental study has discovered that CoO(111) provides active sites to break C-O bonds for CH4 production. The analysis of the reaction mechanism indicated that the C-O bond scission of *CH2O species plays a key role in producing CH4. The nature of dissociating C-O bonds is attributed to the stabilization of *O atoms after C-O bond cleavage and the weakening of C-O bond strength by surface-transferred electrons. This work may offer a paradigm to explore the origin of performance over metal oxides in heterogeneous catalysis.
Collapse
Affiliation(s)
- Kailang Li
- Key
Laboratory for Green Chemical Technology of Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University; Collaborative Innovation Center for Chemical
Science and Engineering, Tianjin 300072, China
| | - Xianghong Li
- Key
Laboratory for Green Chemical Technology of Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University; Collaborative Innovation Center for Chemical
Science and Engineering, Tianjin 300072, China
| | - Lulu Li
- Key
Laboratory for Green Chemical Technology of Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University; Collaborative Innovation Center for Chemical
Science and Engineering, Tianjin 300072, China
| | - Xin Chang
- Key
Laboratory for Green Chemical Technology of Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University; Collaborative Innovation Center for Chemical
Science and Engineering, Tianjin 300072, China
| | - Shican Wu
- Key
Laboratory for Green Chemical Technology of Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University; Collaborative Innovation Center for Chemical
Science and Engineering, Tianjin 300072, China
| | - Chengsheng Yang
- Key
Laboratory for Green Chemical Technology of Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University; Collaborative Innovation Center for Chemical
Science and Engineering, Tianjin 300072, China
| | - Xiwen Song
- Key
Laboratory for Green Chemical Technology of Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University; Collaborative Innovation Center for Chemical
Science and Engineering, Tianjin 300072, China
| | - Zhi-Jian Zhao
- Key
Laboratory for Green Chemical Technology of Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University; Collaborative Innovation Center for Chemical
Science and Engineering, Tianjin 300072, China
| | - Jinlong Gong
- Key
Laboratory for Green Chemical Technology of Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University; Collaborative Innovation Center for Chemical
Science and Engineering, Tianjin 300072, China
- Joint
School of National University of Singapore and Tianjin University,
International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Haihe
Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- National
Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, China
| |
Collapse
|
2
|
Liu S, Govindarajan N, Chan K. Understanding Activity Trends in Furfural Hydrogenation on Transition Metal Surfaces. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sihang Liu
- Catalysis Theory Center, Department of Physics, Technical University of Denmark (DTU), 2800 Kgs. Lyngby, Denmark
| | - Nitish Govindarajan
- Catalysis Theory Center, Department of Physics, Technical University of Denmark (DTU), 2800 Kgs. Lyngby, Denmark
- Materials Science Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Karen Chan
- Catalysis Theory Center, Department of Physics, Technical University of Denmark (DTU), 2800 Kgs. Lyngby, Denmark
| |
Collapse
|