1
|
Li X, Zhang H, Hu Q, Zhou W, Shao J, Jiang X, Feng C, Yang H, He C. Amorphous NiFe Oxide-based Nanoreactors for Efficient Electrocatalytic Water Oxidation. Angew Chem Int Ed Engl 2023; 62:e202300478. [PMID: 36789622 DOI: 10.1002/anie.202300478] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Synergy engineering is an important way to enhance the kinetic activity of oxygen-evolution-reaction (OER) electrocatalysts. Here, we fabricated NiFe amorphous nanoreactor (NiFe-ANR) oxide as OER electrocatalysts via a mild self-catalytic reaction. Firstly, the amorphousness helps transform NiFe-ANR into highly active hydroxyhydroxides, and its many fine-grain boundaries increase active sites. More importantly, as proved by experiments and finite element analysis, the nanoreactor structure alters the spatial curvature and the mass transfer over the catalyst, thereby enriching OH- in the catalyst surface and inner part. Thus, the catalyst with the structure of amorphous nanoreactors gained excellent activity, far superior to the NiFe catalyst with the structure of crystalline nanoreactor or amorphous non-nanoreactor. This work provides new insights into the applications and mechanisms of amorphousness and nanoreactors, embodying the "1+1>2" synergy of crystalline state and morphology.
Collapse
Affiliation(s)
- Xiaojie Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China.,Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Huike Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Qi Hu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Weiliang Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Jiaxin Shao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Xingxing Jiang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China.,Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Chao Feng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China.,Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Hengpan Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Chuanxin He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| |
Collapse
|
2
|
Zhang J, He W, Quast T, Junqueira JRC, Saddeler S, Schulz S, Schuhmann W. Single-entity Electrochemistry Unveils Dynamic Transformation during Tandem Catalysis of Cu 2 O and Co 3 O 4 for Converting NO 3 - to NH 3. Angew Chem Int Ed Engl 2023; 62:e202214830. [PMID: 36469860 PMCID: PMC10108016 DOI: 10.1002/anie.202214830] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/19/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Electrochemically converting nitrate to ammonia is an essential and sustainable approach to restoring the globally perturbed nitrogen cycle. The rational design of catalysts for the nitrate reduction reaction (NO3 RR) based on a detailed understanding of the reaction mechanism is of high significance. We report a Cu2 O+Co3 O4 tandem catalyst which enhances the NH3 production rate by ≈2.7-fold compared to Co3 O4 and ≈7.5-fold compared with Cu2 O, respectively, however, most importantly, we precisely place single Cu2 O and Co3 O4 cube-shaped nanoparticles individually and together on carbon nanoelectrodes provide insight into the mechanism of the tandem catalysis. The structural and phase evolution of the individual Cu2 O+Co3 O4 nanocubes during NO3 RR is unveiled using identical location transmission electron microscopy. Combining single-entity electrochemistry with precise nano-placement sheds light on the dynamic transformation of single catalyst particles during tandem catalysis in a direct way.
Collapse
Affiliation(s)
- Jian Zhang
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Wenhui He
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Thomas Quast
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - João R C Junqueira
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Sascha Saddeler
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany.,Inorganic Chemistry, Faculty of Chemistry and Center for Nanointegration Duisburg-Essen (Cenide), University of Duisburg-Essen, Universitätsstr. 7, 45141, Essen, Germany
| | - Stephan Schulz
- Inorganic Chemistry, Faculty of Chemistry and Center for Nanointegration Duisburg-Essen (Cenide), University of Duisburg-Essen, Universitätsstr. 7, 45141, Essen, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| |
Collapse
|
3
|
Zhang W, Li J, Xia X, Zhou Y. Enhanced Electrochemistry of Single Plasmonic Nanoparticles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wenmin Zhang
- Institute of Chemical Biology and Nanomedicine (ICBN) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Jian Li
- State Key Lab of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Xing‐Hua Xia
- State Key Lab of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yi‐Ge Zhou
- Institute of Chemical Biology and Nanomedicine (ICBN) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| |
Collapse
|
4
|
Zhou Y, Zhang W, Li J, Xia XH. Enhanced Electrochemistry of Single Plasmonic Nanoparticles. Angew Chem Int Ed Engl 2021; 61:e202115819. [PMID: 34890086 DOI: 10.1002/anie.202115819] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Indexed: 11/10/2022]
Abstract
The structure-function relationship of plasmon enhanced electrochemistry (PEEC) is of great importance for the design of efficient PEEC catalyst, but is rarely investigated at single nanoparticle level for the lack of efficient nanoscale methodology. Herein, we report the utilization of nanoparticle impact electrochemistry to allow single nanoparticle PEEC, where the effect of incident light on the plasmonic Ag/Au nanoparticles for accelerating Co-MOFNs catalyzed hydrogen evolution reaction (HER) is systematically explored. It is found that the plasmon excited hot carrier injection can lower the reaction activation energy, resulting in a much promoted reaction probability and the integral charge generated from individual collisions. Besides, a plasmonic nanoparticle filtering method is established to effectively distinguish different plasmonic nanoparticles. This work provides a unique view in understanding the intrinsic physicochemical properties for PEEC at the nano-confined domains.
Collapse
Affiliation(s)
- Yige Zhou
- Hunan University, Institute of Chemical Biolology and Nanomedicine, 2 South Lushan Road, Yuelu District, 410082, Changsha, CHINA
| | - Wenmin Zhang
- Hunan University, College of Chemistry and Chemical Engineering, CHINA
| | - Jian Li
- Nanjing University, School of Chemistry and Chemical Engineering, CHINA
| | - Xing-Hua Xia
- Nanjing University, School of Chemistry and Chemical Engineering, CHINA
| |
Collapse
|