1
|
Lamon S, Yu H, Zhang Q, Gu M. Lanthanide ion-doped upconversion nanoparticles for low-energy super-resolution applications. LIGHT, SCIENCE & APPLICATIONS 2024; 13:252. [PMID: 39277593 PMCID: PMC11401911 DOI: 10.1038/s41377-024-01547-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/31/2024] [Accepted: 07/22/2024] [Indexed: 09/17/2024]
Abstract
Energy-intensive technologies and high-precision research require energy-efficient techniques and materials. Lens-based optical microscopy technology is useful for low-energy applications in the life sciences and other fields of technology, but standard techniques cannot achieve applications at the nanoscale because of light diffraction. Far-field super-resolution techniques have broken beyond the light diffraction limit, enabling 3D applications down to the molecular scale and striving to reduce energy use. Typically targeted super-resolution techniques have achieved high resolution, but the high light intensity needed to outperform competing optical transitions in nanomaterials may result in photo-damage and high energy consumption. Great efforts have been made in the development of nanomaterials to improve the resolution and efficiency of these techniques toward low-energy super-resolution applications. Lanthanide ion-doped upconversion nanoparticles that exhibit multiple long-lived excited energy states and emit upconversion luminescence have enabled the development of targeted super-resolution techniques that need low-intensity light. The use of lanthanide ion-doped upconversion nanoparticles in these techniques for emerging low-energy super-resolution applications will have a significant impact on life sciences and other areas of technology. In this review, we describe the dynamics of lanthanide ion-doped upconversion nanoparticles for super-resolution under low-intensity light and their use in targeted super-resolution techniques. We highlight low-energy super-resolution applications of lanthanide ion-doped upconversion nanoparticles, as well as the related research directions and challenges. Our aim is to analyze targeted super-resolution techniques using lanthanide ion-doped upconversion nanoparticles, emphasizing fundamental mechanisms governing transitions in lanthanide ions to surpass the diffraction limit with low-intensity light, and exploring their implications for low-energy nanoscale applications.
Collapse
Affiliation(s)
- Simone Lamon
- School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, 200093, Shanghai, China.
- Institute of Photonic Chips, University of Shanghai for Science and Technology, 200093, Shanghai, China.
| | - Haoyi Yu
- School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, 200093, Shanghai, China
- Institute of Photonic Chips, University of Shanghai for Science and Technology, 200093, Shanghai, China
| | - Qiming Zhang
- School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, 200093, Shanghai, China
- Institute of Photonic Chips, University of Shanghai for Science and Technology, 200093, Shanghai, China
| | - Min Gu
- School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, 200093, Shanghai, China.
- Institute of Photonic Chips, University of Shanghai for Science and Technology, 200093, Shanghai, China.
| |
Collapse
|
2
|
An Z, Li Q, Huang J, Tao L, Zhou B. Selectively Manipulating Interactions between Lanthanide Sublattices in Nanostructure toward Orthogonal Upconversion. NANO LETTERS 2023. [PMID: 37098101 DOI: 10.1021/acs.nanolett.3c00747] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Smart control of ionic interactions is a key factor to manipulate the luminescence dynamics of lanthanides and tune their emission colors. However, it remains challenging to gain a deep insight into the physics involving the interactions between heavily doped lanthanide ions and in particular between the lanthanide sublattices for luminescent materials. Here we report a conceptual model to selectively manipulate the spatial interactions between erbium and ytterbium sublattices by designing a multilayer core-shell nanostructure. The interfacial cross-relaxation is found to be a leading process to quench the green emission of Er3+, and red-to-green color-switchable upconversion is realized by fine manipulation of the interfacial energy transfer on the nanoscale. Moreover, the temporal control of up-transition dynamics can also lead to an observation of green emission due to its fast rise time. Our results demonstrate a new strategy to achieve orthogonal upconversion, showing great promise in frontier photonic applications.
Collapse
Affiliation(s)
- Zhengce An
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, and Guangdong Engineering Technology Research Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou, 510641, People's Republic of China
| | - Qiqing Li
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, and Guangdong Engineering Technology Research Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou, 510641, People's Republic of China
| | - Jinshu Huang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, and Guangdong Engineering Technology Research Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou, 510641, People's Republic of China
| | - Lili Tao
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Bo Zhou
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, and Guangdong Engineering Technology Research Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou, 510641, People's Republic of China
| |
Collapse
|
3
|
Xie Y, Sun G, Mandl GA, Maurizio SL, Chen J, Capobianco JA, Sun L. Upconversion Luminescence through Cooperative and Energy-Transfer Mechanisms in Yb 3+ -Metal-Organic Frameworks. Angew Chem Int Ed Engl 2023; 62:e202216269. [PMID: 36437239 DOI: 10.1002/anie.202216269] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
Lanthanide-doped metal-organic frameworks (Ln-MOFs) have versatile luminescence properties, however it is challenging to achieve lanthanide-based upconversion luminescence in these materials. Here, 1,3,5-benzenetricarboxylic acid (BTC) and trivalent Yb3+ ions were used to generate crystalline Yb-BTC MOF 1D-microrods with upconversion luminescence under near infrared excitation via cooperative luminescence. Subsequently, the Yb-BTC MOFs were doped with a variety of different lanthanides to evaluate the potential for Yb3+ -based upconversion and energy transfer. Yb-BTC MOFs doped with Er3+ , Ho3+ , Tb3+ , and Eu3+ ions exhibit both the cooperative luminescence from Yb3+ and the characteristic emission bands of these ions under 980 nm irradiation. In contrast, only the 497 nm upconversion emission band from Yb3+ is observed in the MOFs doped with Tm3+ , Pr3+ , Sm3+ , and Dy3+ . The effects of different dopants on the efficiency of cooperative luminescence were established and will provide guidance for the exploitation of Ln-MOFs exhibiting upconversion.
Collapse
Affiliation(s)
- Yao Xie
- Department of Physics, College of Sciences, Shanghai University, 200444, Shanghai, China.,Department of Chemistry, College of Sciences, Shanghai University, 200444, Shanghai, China
| | - Guotao Sun
- School of Materials Science and Engineering, Shanghai University, 200444, Shanghai, China
| | - Gabrielle A Mandl
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, H4B 1R6, Montreal, QC, Canada
| | - Steven L Maurizio
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, H4B 1R6, Montreal, QC, Canada
| | - Jiabo Chen
- Department of Chemistry, College of Sciences, Shanghai University, 200444, Shanghai, China
| | - John A Capobianco
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, H4B 1R6, Montreal, QC, Canada
| | - Lining Sun
- Department of Physics, College of Sciences, Shanghai University, 200444, Shanghai, China.,Department of Chemistry, College of Sciences, Shanghai University, 200444, Shanghai, China
| |
Collapse
|
4
|
Song H, Zhang R, Zhao Z, Wu X, Zhang Y, Wang J, Li B. RGB Tricolor and Multimodal Dynamic Optical Information Encryption and Decoding for Anti-Counterfeiting Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45562-45572. [PMID: 36125983 DOI: 10.1021/acsami.2c12387] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Conventional optical anti-counterfeiting strategies are based on the single-color emission, which are easily deciphered and thus greatly limited in the application of information security. Herein, a multimodal dynamic optical information coding with red, green, and blue (RGB) tricolors has been developed by photoluminescence (PL), persistent luminescence (PersL), thermally stimulated luminescence (TSL), and thermally stimulated persistent luminescence (TSPL). The BaSi2O2N2:Eu2+ phosphors with a blue emission peak at 494 nm were used as the crucial blue optical information coding material and exhibited the distinctive response properties to light, heat, and force stimuli with intrinsic trap depths of 0.674 and 0.82 eV. More importantly, by combining the red Sr2Si5N8:Eu2+,Dy3+ and green SrSi2O2N2:Eu2+,Dy3+ nitride phosphors, a RGB tricolor and multimodal strategy has been successfully developed for anti-counterfeiting applications. The "RGB tricolor flower" with RGB emissions is given as a typical example to achieve the dynamic display of optical information encryption and decoding through the various PL, PersL, TSL, and TSPL modes. Finally, the traditional quick response (QR) code mechanism has been integrated into the design of multi-information encrypted RGB tricolor anti-counterfeiting devices with different identifiabilities of the encrypted information in natural light, PL, PersL, TSL, and TSPL modes. The laminated layers of RGB QR code patterns containing different specific information, such as "DLPU" and "116034", can be effectively recognized in the corresponding modes. The design strategy of RGB tricolor and multimodal optical information encryption and decoding devices in this work greatly improves the security level of advanced optical information technologies and extends the potential applications in dynamic anti-counterfeiting fields.
Collapse
Affiliation(s)
- Hao Song
- Research Institute of Photonics, Dalian Polytechnic University, Dalian 116034, China
| | - Ran Zhang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University, Taiyuan 030001, China
| | - Zihan Zhao
- Research Institute of Photonics, Dalian Polytechnic University, Dalian 116034, China
| | - Xiuping Wu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University, Taiyuan 030001, China
| | - Yanjie Zhang
- Research Institute of Photonics, Dalian Polytechnic University, Dalian 116034, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University, Taiyuan 030001, China
| | - Jinlong Wang
- Research Institute of Photonics, Dalian Polytechnic University, Dalian 116034, China
| | - Bing Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
5
|
Controlling the Energy‐Transfer Processes in a Nanosized Molecular Upconverter to Tap into Luminescence Thermometry Application. Angew Chem Int Ed Engl 2022; 61:e202204839. [DOI: 10.1002/anie.202204839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Indexed: 11/07/2022]
|
6
|
Gálico DA, Murugesu M. Controlling the Energy‐Transfer Processes in a Nanosized Molecular Upconverter to Tap into Luminescence Thermometry Application. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Diogo A. Gálico
- University of Ottawa Chemistry 10 marie curieOttawa K1N6N5 Ottawa CANADA
| | - Muralee Murugesu
- Faculty of Science Department of Chemistry University of OttawaD'Iorio Hall 10 Marie Curie Private K1N 6N5 Ottowa CANADA
| |
Collapse
|