Fan YH, Du M, Li YX, Zhu WJ, Pang JY, Bai Y, Dang DB. Construction of Water-Stable Rare-Earth Organic Frameworks with Ambient High Proton Conductivity Based on Zirconium Sandwiched Heteropolytungstate.
Inorg Chem 2022;
61:13829-13835. [PMID:
35998378 DOI:
10.1021/acs.inorgchem.2c01664]
[Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Water-stable proton-conducting materials owning excellent performances at ambient temperatures are currently one of the crucial challenges. Herein, four water-stable three-dimensional polyoxometalate-based rare-earth organic frameworks have been successfully synthesized and formulated as H{Ln4(L)2(H2O)21[Zr3(OH)3(PW9O34)2]}·15H2O (1-3) (Ln = La (1), Ce (2), Pr (3); L = 3,5-pyridine dicarboxylic acid), which are the first examples of MOFs constructed by a zirconium sandwiched polyoxoanion. There are abundant coordinated water molecules functionalizing the PrIII centers, and simultaneously, plenty of lattice water molecules are fitted into the channel of the framework. A continuous H-bonding network is found between the architectures and plays an important role in stabilizing the structure. Benefiting from the consecutive H-bonding networks, compounds 1-3 showed high proton conductivities at ambient temperature (up to 1.05 × 10-3 S·cm-1 under 98% RH) by a synergistic effect of the combined components.
Collapse