Torrence PF, Maitra RK, Lesiak K, Khamnei S, Zhou A, Silverman RH. Targeting RNA for degradation with a (2'-5')oligoadenylate-antisense chimera.
Proc Natl Acad Sci U S A 1993;
90:1300-4. [PMID:
7679499 PMCID:
PMC45860 DOI:
10.1073/pnas.90.4.1300]
[Citation(s) in RCA: 95] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Antisense oligonucleotides hold considerable promise both as research tools for inhibiting gene expression and as agents for the treatment of a myriad of human diseases. However, targeted destruction of RNA has been difficult to achieve in a versatile, efficient, and reliable manner. We have developed an effective strategy for cleaving unique RNA sequences with 2-5A-dependent RNase, an endoribonuclease that mediates inhibitory effects of interferon on virus infection and is activated by 5'-phosphorylated 2'-5'-linked oligoadenylates known as 2-5A [pn5' A2'(p5' A2')mp5'A], resulting in the cleavage of single-stranded RNA predominantly after UpUp and UpAp sequences. To direct 2-5A-dependent RNase to cleave unique RNA sequences, p5' A2' p5' A2'p5'A was covalently linked to an antisense oligonucleotide to yield a chimeric molecule (2-5A:AS). The antisense oligonucleotide component of 2-5A:AS bound a specific RNA sequence while the accompanying 2-5A component activated 2-5A-dependent RNase, thereby causing the cleavage of the RNA in the targeted sequence. This strategy was demonstrated by inducing specific cleavage within a modified human immunodeficiency virus type 1 vif mRNA in a cell-free system from human lymphoblastoid cells. Because 2-5A-dependent RNase is present in most mammalian cells, the control of gene expression based on this technology--including therapies for cancer, viral infections, and certain genetic diseases--can be envisioned.
Collapse