1
|
Yarman A. Effect of Various Carbon Electrodes on MIP-Based Sensing Proteins Using Poly(Scopoletin): A Case Study of Ferritin. Biomimetics (Basel) 2024; 9:426. [PMID: 39056867 PMCID: PMC11274590 DOI: 10.3390/biomimetics9070426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Sensitivity in the sub-nanomolar concentration region is required to determine important protein biomarkers, e.g., ferritin. As a prerequisite for high sensitivity, in this paper, the affinity of the functional monomer to the macromolecular target ferritin in solution was compared with the value for the respective molecularly imprinted polymer (MIP)-based electrodes, and the influence of various surface modifications of the electrode was investigated. The analytical performance of ferritin sensing was investigated using three different carbon electrodes (screen-printed carbon electrodes, single-walled-carbon-nanotube-modified screen-printed carbon electrodes, and glassy carbon electrodes) covered with a scopoletin-based MIP layer. Regardless of the electrode type, the template molecule ferritin was mixed with the functional monomer scopoletin, and electropolymerization was conducted using multistep amperometry. All stages of MIP preparation were followed by evaluating the diffusional permeability of the redox marker ferricyanide/ferrocyanide through the polymer layer by differential pulse voltammetry. The best results were obtained with glassy carbon electrodes. The MIP sensor responded up to 0.5 µM linearly with a Kd of 0.30 µM. Similar results were also obtained in solution upon the interaction of scopoletin and ferritin using fluorescence spectroscopy, resulting in the quenching of the scopoletin signal, with a calculated Kd of 0.81 µM. Moreover, the binding of 1 µM ferritin led to 49.6% suppression, whereas human serum albumin caused 8.6% suppression.
Collapse
Affiliation(s)
- Aysu Yarman
- Molecular Biotechnology, Faculty of Science, Turkish-German University, Istanbul 34820, Türkiye
| |
Collapse
|
2
|
Zhang X, Yarman A, Bagheri M, El-Sherbiny IM, Hassan RYA, Kurbanoglu S, Waffo AFT, Zebger I, Karabulut TC, Bier FF, Lieberzeit P, Scheller FW. Imprinted Polymers on the Route to Plastibodies for Biomacromolecules (MIPs), Viruses (VIPs), and Cells (CIPs). ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:107-148. [PMID: 37884758 DOI: 10.1007/10_2023_234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Around 30% of the scientific papers published on imprinted polymers describe the recognition of proteins, nucleic acids, viruses, and cells. The straightforward synthesis from only one up to six functional monomers and the simple integration into a sensor are significant advantages as compared with enzymes or antibodies. Furthermore, they can be synthesized against toxic substances and structures of low immunogenicity and allow multi-analyte measurements via multi-template synthesis. The affinity is sufficiently high for protein biomarkers, DNA, viruses, and cells. However, the cross-reactivity of highly abundant proteins is still a challenge.
Collapse
Affiliation(s)
- Xiaorong Zhang
- Institute for Biochemistry and Biology, Universität Potsdam, Potsdam, Germany
| | - Aysu Yarman
- Molecular Biotechnology, Faculty of Science, Turkish-German University, Istanbul, Turkey
| | - Mahdien Bagheri
- Department of Physical Chemistry, Faculty for Chemistry, University of Vienna, Vienna, Austria
| | - Ibrahim M El-Sherbiny
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, Giza, Egypt
- Center for Materials Science (CMS), Zewail City of Science and Technology, Giza, Egypt
| | - Rabeay Y A Hassan
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, Giza, Egypt
- Center for Materials Science (CMS), Zewail City of Science and Technology, Giza, Egypt
| | - Sevinc Kurbanoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | | | - Ingo Zebger
- Institut für Chemie, PC 14 Technische Universität Berlin, Berlin, Germany
| | | | - Frank F Bier
- Institute for Biochemistry and Biology, Universität Potsdam, Potsdam, Germany
| | - Peter Lieberzeit
- Department of Physical Chemistry, Faculty for Chemistry, University of Vienna, Vienna, Austria.
| | - Frieder W Scheller
- Institute for Biochemistry and Biology, Universität Potsdam, Potsdam, Germany.
| |
Collapse
|
3
|
Akgönüllü S, Denizli A. Molecular imprinting-based sensors: Lab-on-chip integration and biomedical applications. J Pharm Biomed Anal 2023; 225:115213. [PMID: 36621283 DOI: 10.1016/j.jpba.2022.115213] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/16/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022]
Abstract
The innovative technology of a marketable lab-on-a-chip platform for point-of-care (POC) in vitro detection has recently attracted remarkable attention. The POC tests can significantly enhance the high standard of medicinal care. In the last decade, clinical diagnostic technology has been broadly advanced and successfully performed in several areas. It seems that lab-on-a-chip approaches play a significant role in these technologies. However, high-cost and time-consuming methods are increasing the challenge and the development of a cost-effective, rapid and efficient method for the detection of biomolecules is urgently needed. Recently, polymer-coated sensing platforms have been a promising area that can be employed in medical diagnosis, pharmaceutical bioassays, and environmental monitoring. The designed on-chip sensors are based on molecular imprinting polymers (MIPs) that use label-free detection technology. Molecular imprinting shines out as a potentially promising technique for creating artificial recognition material with molecular recognition sites. MIPs provide unique advantages such as excellent recognition specificity, high selectivity, and good reusability. This review article aims to define several methods using molecular imprinting for biomolecules and their incorporation with several lab-on-chip technologies to describe the most promising methods for the development of sensing systems based on molecularly imprinted polymers. The higher selectivity, more user-friendly operation is believed to provide MIP-based lab-on-a-chip devices with great potential academic and commercial value in on-site clinical diagnostics and other point-of-care assays.
Collapse
Affiliation(s)
- Semra Akgönüllü
- Division of Biochemistry, Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Adil Denizli
- Division of Biochemistry, Department of Chemistry, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
4
|
Akgönüllü S, Kılıç S, Esen C, Denizli A. Molecularly Imprinted Polymer-Based Sensors for Protein Detection. Polymers (Basel) 2023; 15:629. [PMID: 36771930 PMCID: PMC9919373 DOI: 10.3390/polym15030629] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
The accurate detection of biological substances such as proteins has always been a hot topic in scientific research. Biomimetic sensors seek to imitate sensitive and selective mechanisms of biological systems and integrate these traits into applicable sensing platforms. Molecular imprinting technology has been extensively practiced in many domains, where it can produce various molecular recognition materials with specific recognition capabilities. Molecularly imprinted polymers (MIPs), dubbed plastic antibodies, are artificial receptors with high-affinity binding sites for a particular molecule or compound. MIPs for protein recognition are expected to have high affinity via numerous interactions between polymer matrices and multiple functional groups of the target protein. This critical review briefly describes recent advances in the synthesis, characterization, and application of MIP-based sensor platforms used to detect proteins.
Collapse
Affiliation(s)
- Semra Akgönüllü
- Department of Chemistry, Faculty of Science, Hacettepe University, 06800 Ankara, Turkey
| | - Seçkin Kılıç
- Department of Chemistry, Faculty of Science, Hacettepe University, 06800 Ankara, Turkey
| | - Cem Esen
- Department of Chemistry, Faculty of Science, Aydın Adnan Menderes University, 09010 Aydın, Turkey
| | - Adil Denizli
- Department of Chemistry, Faculty of Science, Hacettepe University, 06800 Ankara, Turkey
| |
Collapse
|
5
|
Li P, Pang J, Xu S, He H, Ma Y, Liu Z. A Glycoform-Resolved Dual-Modal Ratiometric Immunoassay Improves the Diagnostic Precision for Hepatocellular Carcinoma. Angew Chem Int Ed Engl 2022; 61:e202113528. [PMID: 35194906 DOI: 10.1002/anie.202113528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Indexed: 02/06/2023]
Abstract
The glycosylation pattern of alpha fetoprotein (AFP) paves the basis for precise early diagnosis of hepatocellular carcinoma (HCC). However, existing analytical methods ignore the contribution of terminal sialic acid, which has been reported to be highly connected with HCC. Besides, the development of diagnostic assays is severely hindered by the preparation of anti-glycans antibodies. Molecularly imprinted polymers (MIPs), as synthetic antibody mimics, provide unique strengths to address these issues. Herein, we report a MIPs-based dual-modal ratiometric immunoassay for precise HCC diagnosis. Using a "pit one against ten" MIP to recognize a subset of glycans containing sialic acid and/or core fucose, we demonstrated our assay exhibited improved precision as compared with ELISA. This assay provided not only a glycoform-resolved method for precise HCC diagnosis, but also a new paradigm for developing antibody mimics via molecular imprinting towards challenging biomedical applications.
Collapse
Affiliation(s)
- Pengfei Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Jilei Pang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Shuxin Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Hui He
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Yanyan Ma
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| |
Collapse
|
6
|
Molecularly Imprinted Polymer-Based Sensors for SARS-CoV-2: Where Are We Now? Biomimetics (Basel) 2022; 7:biomimetics7020058. [PMID: 35645185 PMCID: PMC9149885 DOI: 10.3390/biomimetics7020058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 01/27/2023] Open
Abstract
Since the first reported case of COVID-19 in 2019 in China and the official declaration from the World Health Organization in March 2021 as a pandemic, fast and accurate diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has played a major role worldwide. For this reason, various methods have been developed, comprising reverse transcriptase-polymerase chain reaction (RT-PCR), immunoassays, clustered regularly interspaced short palindromic repeats (CRISPR), reverse transcription loop-mediated isothermal amplification (RT-LAMP), and bio(mimetic)sensors. Among the developed methods, RT-PCR is so far the gold standard. Herein, we give an overview of the MIP-based sensors utilized since the beginning of the pandemic.
Collapse
|
7
|
Pasquardini L, Bossi AM. Molecularly imprinted polymers by epitope imprinting: a journey from molecular interactions to the available bioinformatics resources to scout for epitope templates. Anal Bioanal Chem 2021; 413:6101-6115. [PMID: 34018035 PMCID: PMC8440283 DOI: 10.1007/s00216-021-03409-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/26/2021] [Accepted: 05/11/2021] [Indexed: 01/07/2023]
Abstract
The molecular imprinting of proteins is the process of forming biomimetics with entailed protein-recognition by means of a template-assisted synthesis. Protein-imprinted polymers (pMIPs) have been successfully employed in separations, assays, sensors, and imaging. From a technical point of view, imprinting a protein is both costly, for protein expression and purification, and challenging, for the preservation of the protein's structural properties. In fact, the imprinting process needs to guarantee the preservation of the same protein three-dimensional conformation that later would be recognized. So far, the captivating idea to imprint just a portion of the protein, i.e., an epitope, instead of the whole, proved successful, offering reduced costs, compatibility with many synthetic conditions (solvents, pH, temperatures), and fine-tuning of the peptide sequence so to target specific physiological and functional conditions of the protein, such as post-translational modifications. Here, protein-protein interactions and the biochemical features of the epitopes are inspected, deriving lessons to prepare more effective pMIPs. Epitopes are categorized in linear or structured, immunogenic or not, located at the protein's surface or buried in its core and the imprinting strategies are discussed. Moreover, attention is given to freely available online bioinformatics resources that might offer key tools to gain further rationale amid the selection process of suitable epitopes templates.
Collapse
Affiliation(s)
| | - Alessandra Maria Bossi
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| |
Collapse
|
8
|
Molecularly imprinted polymers as a selective sorbent for forensic applications in biological samples-a review. Anal Bioanal Chem 2021; 413:6013-6036. [PMID: 34430982 DOI: 10.1007/s00216-021-03596-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/14/2021] [Accepted: 08/02/2021] [Indexed: 01/09/2023]
Abstract
Molecularly imprinted polymers (MIP) consist of a molecular recognition technology with applicability in different areas, including forensic chemistry. Among the forensic applications, the use of MIP in biological fluid analysis has gained prominence. Biological fluids are complex samples that generally require a pre-treatment to eliminate interfering agents to improve the results of the analyses. In this review, we address the development of this molecular imprinting technology over the years, highlighting the forensic applications of molecularly imprinted polymers in biological sample preparation for analysis of stimulant drugs such as cocaine, amphetamines, and nicotine.
Collapse
|
9
|
Chiappini A, Pasquardini L, Bossi AM. Molecular Imprinted Polymers Coupled to Photonic Structures in Biosensors: The State of Art. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5069. [PMID: 32906637 PMCID: PMC7570731 DOI: 10.3390/s20185069] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/25/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022]
Abstract
Optical sensing, taking advantage of the variety of available optical structures, is a rapidly expanding area. Over recent years, whispering gallery mode resonators, photonic crystals, optical waveguides, optical fibers and surface plasmon resonance have been exploited to devise different optical sensing configurations. In the present review, we report on the state of the art of optical sensing devices based on the aforementioned optical structures and on synthetic receptors prepared by means of the molecular imprinting technology. Molecularly imprinted polymers (MIPs) are polymeric receptors, cheap and robust, with high affinity and selectivity, prepared by a template assisted synthesis. The state of the art of the MIP functionalized optical structures is critically discussed, highlighting the key progresses that enabled the achievement of improved sensing performances, the merits and the limits both in MIP synthetic strategies and in MIP coupling.
Collapse
Affiliation(s)
- Andrea Chiappini
- Institute of Photonics and Nanotechnologies (IFN-CNR) CSMFO Laboratory and Fondazione Bruno Kessler (FBK) Photonics Unit, via alla Cascata 56/C, 38123 Povo Trento, Italy;
| | | | - Alessandra Maria Bossi
- Department of Biotechnology, University of Verona, Cà Vignal 1, Strada Le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
10
|
Hand RA, Piletska E, Bassindale T, Morgan G, Turner N. Application of molecularly imprinted polymers in the anti-doping field: sample purification and compound analysis. Analyst 2020; 145:4716-4736. [PMID: 32500888 DOI: 10.1039/d0an00682c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The problem posed by anti-doping requirements is one of the great analytical challenges; multiple compound detection at low ng ml-1 levels from complex samples, with requirements for exceptional confidence in results. This review surveys the design, synthesis and application of molecularly imprinted polymers (MIPs) in this field, focusing on the templating of androgenous anabolic steroids (AASs), as the most commonly abused substances, but also other WADA prohibited substances. Commentary on the application of these materials in detection, clean-up and sensing is offered, alongside views on the future of imprinting in this field.
Collapse
Affiliation(s)
- Rachel A Hand
- School of Pharmacy, De Montfort University, Leicester, LE2 9BH, UK.
| | - Elena Piletska
- Department of Chemistry, University of Leicester, Leicester, LE1 7RH, UK
| | - Thomas Bassindale
- Department of Chemistry and Forensic Science, Sheffield Hallam University, Sheffield, S1 1WB, UK
| | - Geraint Morgan
- School of Physical Sciences, The Open University, Milton Keynes, MK7 6AA, UK
| | - Nicholas Turner
- School of Pharmacy, De Montfort University, Leicester, LE2 9BH, UK.
| |
Collapse
|
11
|
Yarman A, Scheller FW. How Reliable Is the Electrochemical Readout of MIP Sensors? SENSORS (BASEL, SWITZERLAND) 2020; 20:E2677. [PMID: 32397160 PMCID: PMC7248831 DOI: 10.3390/s20092677] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 01/15/2023]
Abstract
Electrochemical methods offer the simple characterization of the synthesis of molecularly imprinted polymers (MIPs) and the readouts of target binding. The binding of electroinactive analytes can be detected indirectly by their modulating effect on the diffusional permeability of a redox marker through thin MIP films. However, this process generates an overall signal, which may include nonspecific interactions with the nonimprinted surface and adsorption at the electrode surface in addition to (specific) binding to the cavities. Redox-active low-molecular-weight targets and metalloproteins enable a more specific direct quantification of their binding to MIPs by measuring the faradaic current. The in situ characterization of enzymes, MIP-based mimics of redox enzymes or enzyme-labeled targets, is based on the indication of an electroactive product. This approach allows the determination of both the activity of the bio(mimetic) catalyst and of the substrate concentration.
Collapse
Affiliation(s)
- Aysu Yarman
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Frieder W. Scheller
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| |
Collapse
|
12
|
Cennamo N, Maniglio D, Tatti R, Zeni L, Bossi AM. Deformable molecularly imprinted nanogels permit sensitivity-gain in plasmonic sensing. Biosens Bioelectron 2020; 156:112126. [PMID: 32275577 DOI: 10.1016/j.bios.2020.112126] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/10/2020] [Accepted: 02/24/2020] [Indexed: 12/23/2022]
Abstract
Soft molecularly imprinted nanogels (nanoMIPs), selective for human transferrin (HTR), were prepared via a template assisted synthesis. Owing to their soft matter, the nanoMIPs were observed to deform at binding to HTR: while no relevant changes were observed in the hydrodynamic sizes of HTR-free compared to HTR-loaded nanoMIPs, the HTR binding resulted in a significant increment of the nanoMIP stiffness, with the mean Young's modulus measured by AFM passing from 17 ± 6 kPa to 56 ± 18 kPa. When coupled to a plastic optical fibre (POF) plasmonic platform, the analyte-induced nanoMIP-deformations amplified the resonance shift, enabling to attain ultra-low sensitivities (LOD = 1.2 fM; linear dynamic range of concentrations from 1.2 fM to 1.8 pM). Therefore, soft molecularly imprinted nanogels that obey to analyte-induced deformation stand as a novel class of sensitivity-gain structures for plasmonic sensing.
Collapse
Affiliation(s)
- Nunzio Cennamo
- University of Campania Luigi Vanvitelli, Department of Engineering, Via Roma 29, 81031, Aversa, Italy
| | - Devid Maniglio
- University of Trento, Department of Industrial Engineering, BIOtech Research Center, Via Delle Regole 101, Mattarello, 38123, Trento, Italy
| | - Roberta Tatti
- University of Verona, Department of Biotechnology, Strada Le Grazie 15, 37134, Verona, Italy
| | - Luigi Zeni
- University of Campania Luigi Vanvitelli, Department of Engineering, Via Roma 29, 81031, Aversa, Italy
| | - Alessandra Maria Bossi
- University of Verona, Department of Biotechnology, Strada Le Grazie 15, 37134, Verona, Italy.
| |
Collapse
|
13
|
Cenci L, Tatti R, Tognato R, Ambrosi E, Piotto C, Bossi AM. Synthesis and characterization of peptide-imprinted nanogels of controllable size and affinity. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.08.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
14
|
Zink S, Moura FA, Autreto PADS, Galvão DS, Mizaikoff B. Virtually imprinted polymers (VIPs): understanding molecularly templated materialsviamolecular dynamics simulations. Phys Chem Chem Phys 2018; 20:13145-13152. [DOI: 10.1039/c7cp08284c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Theoretical model of molecularly imprinted polymers based on molecular dynamics simulations.
Collapse
Affiliation(s)
- S. Zink
- Institute of Analytical and Bioanalytical Chemistry
- Ulm University
- 89081 Ulm
- Germany
| | - F. A. Moura
- Gleb Wataghin Physics Institute
- State University of Campinas UNICAMP
- 13083-970 Campinas
- Brazil
| | | | - D. S. Galvão
- Gleb Wataghin Physics Institute
- State University of Campinas UNICAMP
- 13083-970 Campinas
- Brazil
| | - B. Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry
- Ulm University
- 89081 Ulm
- Germany
| |
Collapse
|
15
|
Selectivity/Specificity Improvement Strategies in Surface-Enhanced Raman Spectroscopy Analysis. SENSORS 2017; 17:s17112689. [PMID: 29160798 PMCID: PMC5713634 DOI: 10.3390/s17112689] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/31/2017] [Accepted: 11/12/2017] [Indexed: 12/13/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a powerful technique for the discrimination, identification, and potential quantification of certain compounds/organisms. However, its real application is challenging due to the multiple interference from the complicated detection matrix. Therefore, selective/specific detection is crucial for the real application of SERS technique. We summarize in this review five selective/specific detection techniques (chemical reaction, antibody, aptamer, molecularly imprinted polymers and microfluidics), which can be applied for the rapid and reliable selective/specific detection when coupled with SERS technique.
Collapse
|
16
|
Hande PE, Samui AB, Kulkarni PS. Highly selective monitoring of metals by using ion-imprinted polymers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:7375-404. [PMID: 25663338 DOI: 10.1007/s11356-014-3937-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/01/2014] [Indexed: 05/27/2023]
Abstract
Ion imprinting technology is one of the most promising tools in separation and purification sciences because of its high selectivity, good stability, simplicity and low cost. It has been mainly used for selective removal, preconcentration, sensing and few miscellaneous fields. In this review article, recent methodologies in the synthesis of IIPs have been discussed. For several applications, different parameters of IIP including complexing and leaching agent, pH, relative selectivity coefficient, detection limit and adsorption capacity have been evaluated and an attempt has been made to generalize. Biomedical applications mostly include selective removal of toxic metals from human blood plasma and urine samples. Wastewater treatment involves selective removal of highly toxic metal ions like Hg(II), Pb(II), Cd(II), As(V), etc. Preconcentration covers recovery of economically important metal ions such as gold, silver, platinum and palladium. It also includes selective preconcentration of lanthanides and actinides. In sensing, various IIP-based sensors have been fabricated for detection of toxic metal ions. This review article includes almost all metal ions based on the ion-imprinted polymer. At the end, the future outlook section presents the discussion on the advancement, corresponding merits and the need of continued research in few specific areas. Graphical Abstract IIPs for the selective monitoring of metals.
Collapse
Affiliation(s)
- Pankaj E Hande
- Energy and Environment Laboratory, Department of Applied Chemistry, Defence Institute of Advanced Technology, Deemed University, Pune, 411025, India
| | | | | |
Collapse
|
17
|
Teixeira Tarley CR, Fernandes FF, Luccas PO, Segatelli MG. Enhanced Selectivity and Sensitivity for Flow Injection Spectrophotometric Determination of Cobalt Using Solid Phase Extraction with a 2D Ion-Imprinted Adsorbent. ANAL LETT 2011. [DOI: 10.1080/00032719.2010.500756] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Abstract
In contrast to the thermolysis of p-benzoquinone, which does not decompose until the temperature is over 800 degrees C, and then primarily yields vinylacetylene, the corresponding anion radical, precipitated from liquid ammonia [Na(+)(NH(3))C(6)H(4)O(2)(*-)], decomposes at 380 degrees C and fragments primarily into phenol, hydroquinone, ammonia, methane, carbon monoxide, hydrogen, and minor amounts of other simple compounds. When the benzoquinone is replaced with perdeuteriobenzoquinone, deuterium and hydrogen are randomly scrambled into the products, and both ND(3) and CH(4) are formed. When the hot pyrolysis container is completely sealed, preventing the escape of volatile materials, p-aminophenol, as opposed to phenol, is the major liquid product.
Collapse
Affiliation(s)
- Cheryl D Stevenson
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, USA.
| | | | | |
Collapse
|