1
|
Fu H, Zhang M, Zhang Y, Wang Q, Xu Z, Zhou Q, Li Z, Bai Y, Li Y, Zhang ZG. Modular-Approach Synthesis of Giant Molecule Acceptors via Lewis-Acid-Catalyzed Knoevenagel Condensation for Stable Polymer Solar Cells. Angew Chem Int Ed Engl 2023; 62:e202306303. [PMID: 37322862 DOI: 10.1002/anie.202306303] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/17/2023]
Abstract
The operational stability of polymer solar cells is a critical concern with respect to the thermodynamic relaxation of acceptor-donor-acceptor (A-D-A) or A-DA'D-A structured small-molecule acceptors (SMAs) within their blends with polymer donors. Giant molecule acceptors (GMAs) bearing SMAs as subunits offer a solution to this issue, while their classical synthesis via the Stille coupling suffers from low reaction efficiency and difficulty in obtaining mono-brominated SMA, rendering the approach impractical for their large-scale and low-cost preparation. In this study, we present a simple and cost-effective solution to this challenge through Lewis acid-catalyzed Knoevenagel condensation with boron trifluoride etherate (BF3 ⋅ OEt2 ) as catalyst. We demonstrated that the coupling of the monoaldehyde-terminated A-D-CHO unit and the methylene-based A-link-A (or its silyl enol ether counterpart) substrates can be quantitatively achieved within 30 minutes in the presence of acetic anhydride, affording a variety of GMAs connected via the flexible and conjugated linkers. The photophysical properties was fully studied, yielding a high device efficiency of over 18 %. Our findings offer a promising alternative for the modular synthesis of GMAs with high yields, easier work up, and the widespread application of such methodology will undoubtedly accelerate the progress of stable polymer solar cells.
Collapse
Affiliation(s)
- Hongyuan Fu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Ming Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Youdi Zhang
- College of Chemistry, Key Laboratory of Advanced Green Functional Materials, Changchun Normal University, 130032, Changchun, China
| | - Qingyuan Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Zheng'ao Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Qiuju Zhou
- Analysis & Testing Center, Xinyang Normal University, 464000, Xinyang, Henan, China
| | - Zhengkai Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Yang Bai
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Yongfang Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Zhi-Guo Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| |
Collapse
|
2
|
Stiti A, Cenacchi Pereira AM, Lecommandoux S, Taton D. Group-Transfer Polymerization-Induced Self-Assembly (GTPISA) in Non-polar Media: An Organocatalyzed Route to Block Copolymer Nanoparticles at Room Temperature. Angew Chem Int Ed Engl 2023; 62:e202305945. [PMID: 37403785 DOI: 10.1002/anie.202305945] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 07/06/2023]
Abstract
Polymerization-induced self-assembly (PISA) enables the synthesis at large scale of a wide variety of functional nanoparticles. However, a large number of works are related to controlled radical polymerization (CRP) methods and are generally undertaken at elevated temperatures (>50 °C). Here is the first report on methacrylate-based nanoparticles fabricated by group transfer polymerization-induced self-assembly (GTPISA) in non-polar media (n-heptane). This GTPISA process is achieved at room temperature (RT) using 1-methoxy-1-(trimethylsiloxy)-2-methylprop-1-ene (MTS) and tetrabutylammonium bis-benzoate (TBABB) as initiator and organic catalyst, respectively. Under these conditions, well-defined metal-free and colorless diblock copolymers are produced with efficient crossover from the non-polar stabilizing poly(lauryl methacrylate) (PLMA) block to the non-soluble poly(benzyl methacrylate) (PBzMA) segment. The resulting PLMA-b-PBzMA block copolymers simultaneously self-assemble into nanostructures of various sizes and morphologies. GTPISA in non-polar solvent proceeds rapidly at RT and avoids the use of sulfur or halogenated compounds or metallic catalysts associated with the implementation of CRP methods, thus expanding the potential of PISA formulations for applications in non-polar environments.
Collapse
Affiliation(s)
- Assia Stiti
- Laboratoire de Chimie des Polymères Organiques (LCPO), Université de Bordeaux, INP-ENSCBP, 16 av. Pey Berland, 33607, Pessac cedex, France
- Centre de Recherche de Solaize, T, otalEnergies OneTech, Chemin du Canal-BP 22, 69360, Solaize, France
| | | | - Sébastien Lecommandoux
- Laboratoire de Chimie des Polymères Organiques (LCPO), Université de Bordeaux, INP-ENSCBP, 16 av. Pey Berland, 33607, Pessac cedex, France
| | - Daniel Taton
- Laboratoire de Chimie des Polymères Organiques (LCPO), Université de Bordeaux, INP-ENSCBP, 16 av. Pey Berland, 33607, Pessac cedex, France
| |
Collapse
|
3
|
Evans DA, Beiger JJ, Burch JD, Fuller PH, Glorius F, Kattnig E, Thaisrivongs DA, Trenkle WC, Young JM, Zhang J. Total Synthesis of Aflastatin A. J Am Chem Soc 2022; 144:19953-19972. [PMID: 36269121 DOI: 10.1021/jacs.2c08244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The total syntheses of aflastatin A and its C3-C48 degradation fragment (6a, R = H) have been accomplished. The syntheses feature several complex diastereoselective fragment couplings, including a Felkin-selective trityl-catalyzed Mukaiyama aldol reaction, a chelate-controlled aldol reaction involving soft enolization with magnesium, and an anti-Felkin-selective boron-mediated oxygenated aldol reaction. Careful comparison of the spectroscopic data for the synthetic C3-C48 degradation fragment to that reported by the isolation group revealed a structural misassignment in the lactol region of the naturally derived degradation product. Ultimately, the data reported for the naturally derived aflastatin A C3-C48 degradation lactol (6a, R = H) were attributed to its derivative lactol trideuteriomethyl ether (6c, R = CD3). Additionally, the revised absolute configurations of six stereogenic centers (C8, C9, and C28-C31) were confirmed.
Collapse
Affiliation(s)
- David A Evans
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Jason J Beiger
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Jason D Burch
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Peter H Fuller
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Frank Glorius
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Egmont Kattnig
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - David A Thaisrivongs
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - William C Trenkle
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Joseph M Young
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Jing Zhang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
4
|
Li YH, Ouyang Y, Chekshin N, Yu JQ. Pd II-Catalyzed γ-C(sp 3)-H (Hetero)Arylation of Ketones Enabled by Transient Directing Groups. ACS Catal 2022; 12:10581-10586. [PMID: 37305173 PMCID: PMC10249709 DOI: 10.1021/acscatal.2c03400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pd(II)-catalyzed γ-C(sp3)-H (hetero)arylation of aliphatic ketones is developed using α-amino acid as transient directing groups (TDG). A variety of aliphatic ketones were (hetero)arylated at the γ-position via a 5,6-membered fused cyclopalladation intermediate to afford the remotely arylated products in up to 88% yield. The crucial ligand effect of 2-pyridone is further enhanced by reducing the loading of acid additives. Consequentially, the improved reactivity of this catalytic system has also made possible the cyclic γ-methylene C(sp3)-H arylation of ketones. Mechanistic investigtigation and comparison to the γ-C-H arylation of aldehydes revealed a structural insight for designing site selective TDG.
Collapse
Affiliation(s)
- Yi-Hao Li
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Yuxin Ouyang
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Nikita Chekshin
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
5
|
Zaky MS, Guichard G, Taton D. Block Copolymer Synthesis by a Sequential Addition Strategy from the Organocatalytic Group Transfer Polymerization of Methyl Methacrylate to the Ring-Opening Polymerization of Lactide. Macromol Rapid Commun 2022; 43:e2200395. [PMID: 35868609 DOI: 10.1002/marc.202200395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/27/2022] [Indexed: 11/05/2022]
Abstract
Sequential block copolymerization involving comonomers belonging to different classes, e.g., a vinyl-type monomer and a heterocycle, is a challenging task in macromolecular chemistry, as corresponding propagating species do not interconvert easily from one to the other by crossover reactions. Here, it is first evidenced that 1-methoxy 2-methyl 1-trimethylsilyloxypropene (MTS), i.e., a silyl ketene acetal (SKA)-containing initiator, can be used in presence of the P4 -t-Bu phosphazene organic base to control the ring-opening polymerization (ROP) of racemic lactide (rac-LA). The elementary reaction, which rapidly transforms SKA groups into propagating alkoxides, can be leveraged to directly synthesize well-defined poly(methyl methacrylate)-b-polylactide (PMMA-b-PLA) block copolymers. This is achieved using P4 -t-Bu as the single organic catalyst and MTS as the initiator for the group transfer polymerization (GTP) of methyl methacrylate (MMA), followed by the ROP of rac-LA. Both polymerization methods are implemented under selective and controlled/living conditions at room temperature in THF. This sequential addition strategy further expands the scope of organic catalysis of polymerizations for macromolecular engineering of block copolymers involving propagating species of disparate reactivity. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mohamed Samir Zaky
- Laboratoire de Chimie des Polymères Organiques (LCPO), UMR 5629, Université de Bordeaux, INP-ENSCBP, 16 av. Pey Berland, PESSAC cedex, 33607, France
| | - Gilles Guichard
- Univ. Bordeaux, CNRS, CBMN, UMR 5248, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, Pessac, F-33607, France
| | - Daniel Taton
- Laboratoire de Chimie des Polymères Organiques (LCPO), UMR 5629, Université de Bordeaux, INP-ENSCBP, 16 av. Pey Berland, PESSAC cedex, 33607, France
| |
Collapse
|
6
|
Potent Antibiotic Lemonomycin: A Glimpse of Its Discovery, Origin, and Chemical Synthesis. Molecules 2022; 27:molecules27134324. [PMID: 35807568 PMCID: PMC9268379 DOI: 10.3390/molecules27134324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/01/2022] [Accepted: 07/01/2022] [Indexed: 02/05/2023] Open
Abstract
Lemonomycin (1) was first isolated from the fermentation broth of Streptomyces candidus in 1964. The complete chemical structure was not elucidated until 2000 with extensive spectroscopic analysis. Lemonomycin is currently known as the only glycosylated tetrahydroisoquinoline antibiotic. Its potent antibacterial activity against Staphylococcus aureus and Bacillus subtilis and complex architecture make it an ideal target for total synthesis. In this short review, we summarize the research status of lemonomycin for biological activity, biosynthesis, and chemical synthesis. The unique deoxy aminosugar-lemonose was proposed to play a crucial role in biological activity, as shown in other antibiotics, such as arimetamycin A, nocathiacin I, glycothiohexide α, and thiazamycins. Given the self-resistance of the original bacterial host, the integration of biosynthesis and chemical synthesis to pursue efficient synthesis and further derivatization is in high demand for the development of novel antibiotics to combat antibiotic-resistant infections.
Collapse
|
7
|
Moser D, Sparr C. Synthesis of Atropisomeric Two-Axis Systems by the Catalyst-Controlled syn- and anti-Selective Arene-Forming Aldol Condensation. Angew Chem Int Ed Engl 2022; 61:e202202548. [PMID: 35343034 PMCID: PMC9322266 DOI: 10.1002/anie.202202548] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Indexed: 12/21/2022]
Abstract
Simultaneous control over the configuration of multiple stereocenters is accomplished by numerous catalytic methods, providing a reliable basis for the synthesis of stereochemically complex targets in isomerically defined form. In contrast, addressing the configurations of multiple stereogenic axes with diastereodivergent catalyst control is thus far only possible by stepwise approaches. Herein we now describe that all four stereoisomers of atropisomeric two-axis systems are directly tractable by assembling a central aromatic unit of teraryls through an arene-forming aldol condensation. By using cinchona alkaloid-based ion-pairing catalysts, the four feasible reaction pathways are differentiated from identical substrates under defined basic conditions without preactivation, thus enabling complete stereodivergence with enantioselectivities of up to 99 : 1 e.r.
Collapse
Affiliation(s)
- Daniel Moser
- Department of ChemistryUniversity of BaselSt. Johanns-Ring 194056BaselSwitzerland
- NCCR Molecular Systems EngineeringBPR 1095Mattenstrasse 24a4058BaselSwitzerland
| | - Christof Sparr
- Department of ChemistryUniversity of BaselSt. Johanns-Ring 194056BaselSwitzerland
- NCCR Molecular Systems EngineeringBPR 1095Mattenstrasse 24a4058BaselSwitzerland
| |
Collapse
|
8
|
Moser D, Sparr C. Synthesis of Atropisomeric Two‐Axis Systems by the Catalyst‐ Controlled syn‐ and anti‐Selective Arene‐Forming Aldol Condensation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Daniel Moser
- University of Basel: Universitat Basel Department of Chemistry SWITZERLAND
| | - Christof Sparr
- University of Basel Department of Chemistry St. Johanns-Ring 19 4056 Basel SWITZERLAND
| |
Collapse
|
9
|
Sameera W, Takeda Y, Ohki Y. Transition metal catalyzed cross-coupling and nitrogen reduction reactions: Lessons from computational studies. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2022. [DOI: 10.1016/bs.adomc.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Saikia J, Dharmalingam K, Anandalakshmi R, Redkar AS, Bhat VT, Ramakrishnan V. Electric field modulated peptide based hydrogel nanocatalysts. SOFT MATTER 2021; 17:9725-9735. [PMID: 34643203 DOI: 10.1039/d1sm00724f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The ability to modulate self-assembly is the key to manufacture application-oriented materials. In this study, we investigated the effect of three independent variables that can modulate the catalytic activity of self-assembling peptides. The first two variables, amino acid sequence and its stereochemistry, were examined for their specific roles in the epitaxial growth and hydrogelation properties of a series of catalytic tripeptides. We observed that aromatic π-π interactions that direct the self-assembly of designed peptides, and the catalytic properties of hydrogels, are governed by the position and chirality of the proline residue. Subsequently, the influence of the third variable, an external electric field, was also tested to confirm its catalytic efficiency for the asymmetric C-C bond-forming aldol reaction. In particular, the electric field treated pff and PFF gels showed 10 and 36% higher stereoselectivity, respectively, compared with the control. Structure-property analysis using CD and FTIR spectroscopy indicates the electric field-induced beta to non-beta conformational transition in the peptide secondary structure, which corroborates with its reduced cross-link density and fibril width, respectively. Amplitude sweep rheology of the gels suggests a decrease in the storage modulus, with increased field strength. The results showed that an electric field of optimal strength can modulate the physical characteristics of the hydrogel, which in turn is manifested in the observed difference in enantioselectivity.
Collapse
Affiliation(s)
- Jahnu Saikia
- Molecular Informatics and Design Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| | - K Dharmalingam
- Advanced Energy & Materials Systems Laboratory, Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - R Anandalakshmi
- Advanced Energy & Materials Systems Laboratory, Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Amay Sanjay Redkar
- Molecular Informatics and Design Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| | - Venugopal T Bhat
- Organic Synthesis and Catalysis Laboratory SRM Research Institute and Department of Chemistry SRM Institute of Science and Technology, Tamil Nadu 603203, India.
| | - Vibin Ramakrishnan
- Molecular Informatics and Design Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
11
|
Wang Y, Wu G, Xu X, Pang B, Liao S, Ji Y. Palladium-Catalyzed β-C(sp 3)-H Arylation of Aliphatic Ketones Enabled by a Transient Directing Group. J Org Chem 2021; 86:7296-7303. [PMID: 33950672 DOI: 10.1021/acs.joc.1c00646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The direct arylation of aliphatic ketones has been developed via Pd-catalyzed β-C(sp3)-H bond functionalization with 2-(aminooxy)-N,N-dimethylacetamide as a novel transient directing group (TDG), which showed remarkable directing ability to generate arylated products in moderate to good yields. Furthermore, the reaction can tolerate abundant substrate of ketones and aryl iodides. This study expands the scope of applications for TDGs.
Collapse
Affiliation(s)
- Yangyang Wang
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R. China
| | - Gaorong Wu
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R. China
| | - Xiaobo Xu
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R. China
| | - Binghan Pang
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R. China
| | - Shaowen Liao
- Shanghai Jinli Pharmaceutical Co. Ltd., 108 Yuegong Road, Shanghai 201507, P.R. China
| | - Yafei Ji
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R. China
| |
Collapse
|
12
|
Direct Asymmetric Aldol Reaction in Continuous Flow Using Gel‐Bound Organocatalysts. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
13
|
Gulbe K, Lugiņina J, Jansons E, Kinens A, Turks M. Metal-free glycosylation with glycosyl fluorides in liquid SO 2. Beilstein J Org Chem 2021; 17:964-976. [PMID: 33981367 PMCID: PMC8093551 DOI: 10.3762/bjoc.17.78] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/17/2021] [Indexed: 11/23/2022] Open
Abstract
Liquid SO2 is a polar solvent that dissolves both covalent and ionic compounds. Sulfur dioxide possesses also Lewis acid properties, including the ability to covalently bind Lewis basic fluoride ions in a relatively stable fluorosulfite anion (FSO2 -). Herein we report the application of liquid SO2 as a promoting solvent for glycosylation with glycosyl fluorides without any external additive. By using various temperature regimes, the method is applied for both armed and disarmed glucose and mannose-derived glycosyl fluorides in moderate to excellent yields. A series of pivaloyl-protected O- and S-mannosides, as well as one example of a C-mannoside, are synthesized to demonstrate the scope of the glycosyl acceptors. The formation of the fluorosulfite species during the glycosylation with glycosyl fluorides in liquid SO2 is proved by 19F NMR spectroscopy. A sulfur dioxide-assisted glycosylation mechanism that proceeds via solvent separated ion pairs is proposed, whereas the observed α,β-selectivity is substrate-controlled and depends on the thermodynamic equilibrium.
Collapse
Affiliation(s)
- Krista Gulbe
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena str. 3, Riga, LV-1048, Latvia
| | - Jevgeņija Lugiņina
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena str. 3, Riga, LV-1048, Latvia
| | - Edijs Jansons
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena str. 3, Riga, LV-1048, Latvia
| | - Artis Kinens
- Latvian Institute of Organic Synthesis, Aizkraukles str. 21, Riga, LV-1006, Latvia.,Department of Chemistry, University of Latvia, Jelgavas str. 1, Riga, LV-1004, Latvia
| | - Māris Turks
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena str. 3, Riga, LV-1048, Latvia
| |
Collapse
|
14
|
Lipshultz JM, Li G, Radosevich AT. Main Group Redox Catalysis of Organopnictogens: Vertical Periodic Trends and Emerging Opportunities in Group 15. J Am Chem Soc 2021; 143:1699-1721. [PMID: 33464903 PMCID: PMC7934640 DOI: 10.1021/jacs.0c12816] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A growing number of organopnictogen redox catalytic methods have emerged-especially within the past 10 years-that leverage the plentiful reversible two-electron redox chemistry within Group 15. The goal of this Perspective is to provide readers the context to understand the dramatic developments in organopnictogen catalysis over the past decade with an eye toward future development. An exposition of the fundamental differences in the atomic structure and bonding of the pnictogens, and thus the molecular electronic structure of organopnictogen compounds, is presented to establish the backdrop against which organopnictogen redox reactivity-and ultimately catalysis-is framed. A deep appreciation of these underlying periodic principles informs an understanding of the differing modes of organopnictogen redox catalysis and evokes the key challenges to the field moving forward. We close by addressing forward-looking directions likely to animate this area in the years to come. What new catalytic manifolds can be developed through creative catalyst and reaction design that take advantage of the intrinsic redox reactivity of the pnictogens to drive new discoveries in catalysis?
Collapse
Affiliation(s)
- Jeffrey M Lipshultz
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Gen Li
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alexander T Radosevich
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
15
|
Murakami M. Achievements of the Late Professor Teruaki Mukaiyama. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Masahiro Murakami
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University
| |
Collapse
|
16
|
Murakami M. Achievements of the Late Professor Teruaki Mukaiyama. CHEM REC 2020; 21:2-16. [PMID: 33305537 DOI: 10.1002/tcr.202000105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 11/10/2022]
Abstract
This essay illuminates the quintessence of the life of the late Professor Teruaki Mukaiyama, the founding editor of The Chemical Record. It shares first-hand knowledge of his heartfelt and enlightening mentorship as well as his major scientific contributions to the chemical community. It will serve as an ever-lasting message of the didactic guidance and encouragement he provided for the future generations.
Collapse
Affiliation(s)
- Masahiro Murakami
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University Katsura, Kyoto, 615-8510, Japan
| |
Collapse
|
17
|
Abstract
Carbohydrates are a large class of natural products that play key roles in a number of biological processes such as in cellular communication or disease progression. Carbohydrates are also used as vaccines and pharmaceuticals. Their synthesis through glycosylation reactions is challenging, and often stoichiometric amounts of promoters are required. Transition metal catalyzed glycosylation reactions are far less common, but can have advantages with respect to reaction conditions and selectivity. The review intends to approach the topic from the catalysis and carbohydrate perspective to encourage researchers from both the fields to perform research in the area. The article covers the basics in glycosylation and catalysis chemistry. The catalysts for the reaction can be roughly divided into two groups. In one group, the catalysts serve as Lewis acids. In the other group, the catalysts play a higher sophisticated role, are involved in all elementary steps of the mechanism and remain coordinated to the substrate throughout the whole catalytic cycle. Based on selected examples, the main trends in transition metal catalyzed glycosylation reactions are explained. Lewis acid catalysts tend to require a somewhat higher catalyst load compared to other organometallic catalysts. The reaction conditions such as the temperature and time depend in many cases on the leaving group employed. An outlook is also presented. The article is not meant to be comprehensive; it outlines the most common transition metal catalyzed processes with the intention to bring the catalysis and carbohydrate communities together and to inspire research activities in both areas.
Collapse
Affiliation(s)
- Eike B Bauer
- University of Missouri - St Louis, Department of Chemistry and Biochemistry, One University Boulevard, St Louis, MO 63121, USA.
| |
Collapse
|
18
|
Inai M, Oguri Y, Horikawa M, Kaku H, Suzuki S, Kitamura K, Tsunoda T. Total Syntheses and Cytotoxic Evaluations of Cryptolactones A 1, A 2, B 1, B 2, and Their Derivatives. Chem Pharm Bull (Tokyo) 2020; 68:380-383. [PMID: 32238655 DOI: 10.1248/cpb.c19-01114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cryptolactones A1, A2, B1, and B2 isolated from a Cryptomyzus sp. aphid were synthesized via the Mukaiyama aldol reaction and olefin metathesis. Their antipodes and derivatives were also synthesized by the same strategy to investigate structure-activity relationships. These compounds exhibited cytotoxic activity against human promyelocytic leukemia HL-60 cells with IC50 values of 2.1-42 µM.
Collapse
Affiliation(s)
- Makoto Inai
- School of Pharmaceutical Sciences, University of Shizuoka
| | - Yuki Oguri
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| | | | - Hiroto Kaku
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| | - Shinya Suzuki
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| | - Kei Kitamura
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| | - Tetsuto Tsunoda
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| |
Collapse
|
19
|
Zhou M, Tsien J, Qin T. Sulfur(IV)-Mediated Unsymmetrical Heterocycle Cross-Couplings. Angew Chem Int Ed Engl 2020; 59:7372-7376. [PMID: 32043749 DOI: 10.1002/anie.201915425] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Indexed: 11/09/2022]
Abstract
Despite the tremendous utilities of metal-mediated cross-couplings in modern organic chemistry, coupling reactions involving nitrogenous heteroarenes remain a challenging undertaking - coordination of Lewis basic atoms into metal centers often necessitate elevated temperature, high catalyst loading, etc. Herein, we report a sulfur (IV) mediated cross-coupling amendable for the efficient synthesis of heteroaromatic substrates. Addition of heteroaryl nucleophiles to a simple, readily-accessible alkyl sulfinyl (IV) chloride allows formation of a trigonal bipyramidal sulfurane intermediate. Reductive elimination therefrom provides bis-heteroaryl products in a practical and efficient fashion.
Collapse
Affiliation(s)
- Min Zhou
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9038, USA
| | - Jet Tsien
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9038, USA
| | - Tian Qin
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9038, USA
| |
Collapse
|
20
|
Zhou M, Tsien J, Qin T. Sulfur(IV)‐Mediated Unsymmetrical Heterocycle Cross‐Couplings. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915425] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Min Zhou
- Department of BiochemistryThe University of Texas Southwestern Medical Center 5323 Harry Hines Boulevard Dallas TX 75390-9038 USA
| | - Jet Tsien
- Department of BiochemistryThe University of Texas Southwestern Medical Center 5323 Harry Hines Boulevard Dallas TX 75390-9038 USA
| | - Tian Qin
- Department of BiochemistryThe University of Texas Southwestern Medical Center 5323 Harry Hines Boulevard Dallas TX 75390-9038 USA
| |
Collapse
|
21
|
Mizutsu R, Asato R, Martin CJ, Yamada M, Nishikawa Y, Katao S, Yamada M, Nakashima T, Kawai T. Photo-Lewis Acid Generator Based on Radical-Free 6π Photo-Cyclization Reaction. J Am Chem Soc 2019; 141:20043-20047. [PMID: 31814390 DOI: 10.1021/jacs.9b11821] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We present here a new photo-active molecule which acts as a photo-Lewis acid generator (PLAG) based on photo-chemical 6π-percyclization. Photo-illumination of the PLAG molecule produces a condensed aromatic carbocation with a triflate counteranion, which exhibits Lewis acid chemical catalytic reactivity such as initiation of the polymerization of epoxy monomers and catalysis of Mukaiyama-aldol reactions. The terminal-end structure in the epoxy polymerization was modified with the Lewis acid fragment. The carbocation induced the Mukaiyama-aldol reaction as a new photo-gated system with remarkably high catalytic reactivity and turnover numbers higher than 60. The photo-chemical quantum yield of the carbocation generation is 50%, which is considerably higher than obtained with most Brønsted photo-acid generators.
Collapse
Affiliation(s)
- Ryo Mizutsu
- Division of Materials Science , Nara Institute of Science and Technology (NAIST) , Ikoma , Nara 630-0192 , Japan
| | - Ryosuke Asato
- Division of Materials Science , Nara Institute of Science and Technology (NAIST) , Ikoma , Nara 630-0192 , Japan.,NAIST-CEMES International Collaborative Laboratory for Supraphotoactive Systems , NAIST, CEMES-UPR 8011 CNRS , 29, rue Jeanne Marvig , BP 94347, 31055 Toulouse Cedex 4 , France
| | - Colin J Martin
- Division of Materials Science , Nara Institute of Science and Technology (NAIST) , Ikoma , Nara 630-0192 , Japan.,NAIST-CEMES International Collaborative Laboratory for Supraphotoactive Systems , NAIST, CEMES-UPR 8011 CNRS , 29, rue Jeanne Marvig , BP 94347, 31055 Toulouse Cedex 4 , France
| | - Mihoko Yamada
- Division of Materials Science , Nara Institute of Science and Technology (NAIST) , Ikoma , Nara 630-0192 , Japan
| | - Yoshiko Nishikawa
- Division of Materials Science , Nara Institute of Science and Technology (NAIST) , Ikoma , Nara 630-0192 , Japan
| | - Shohei Katao
- Division of Materials Science , Nara Institute of Science and Technology (NAIST) , Ikoma , Nara 630-0192 , Japan
| | - Miku Yamada
- Division of Materials Science , Nara Institute of Science and Technology (NAIST) , Ikoma , Nara 630-0192 , Japan
| | - Takuya Nakashima
- Division of Materials Science , Nara Institute of Science and Technology (NAIST) , Ikoma , Nara 630-0192 , Japan
| | - Tsuyoshi Kawai
- Division of Materials Science , Nara Institute of Science and Technology (NAIST) , Ikoma , Nara 630-0192 , Japan.,NAIST-CEMES International Collaborative Laboratory for Supraphotoactive Systems , NAIST, CEMES-UPR 8011 CNRS , 29, rue Jeanne Marvig , BP 94347, 31055 Toulouse Cedex 4 , France
| |
Collapse
|
22
|
Lecomte M, Lipshultz JM, Kim-Lee SH, Li G, Radosevich AT. Driving Recursive Dehydration by P III/P V Catalysis: Annulation of Amines and Carboxylic Acids by Sequential C-N and C-C Bond Formation. J Am Chem Soc 2019; 141:12507-12512. [PMID: 31345031 PMCID: PMC6693942 DOI: 10.1021/jacs.9b06277] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
A method
for the annulation of amines and carboxylic acids to form
pharmaceutically relevant azaheterocycles via organophosphorus PIII/PV redox catalysis is reported. The method employs
a phosphetane catalyst together with a mild bromenium oxidant and
terminal hydrosilane reductant to drive successive C–N and
C–C bond-forming dehydration events via the serial action of
a catalytic bromophosphonium intermediate. These results demonstrate
the capacity of PIII/PV redox catalysis to enable
iterative redox-neutral transformations in complement to the common
reductive driving force of the PIII/PV couple.
Collapse
Affiliation(s)
- Morgan Lecomte
- Department of Chemistry , Massachusetts Institute of Technology , 02139 Cambridge , Massachusetts , United States
| | - Jeffrey M Lipshultz
- Department of Chemistry , Massachusetts Institute of Technology , 02139 Cambridge , Massachusetts , United States
| | - Shin-Ho Kim-Lee
- Department of Chemistry , Massachusetts Institute of Technology , 02139 Cambridge , Massachusetts , United States.,Departamento de Química Orgánica, Facultad de Ciencias , Universidad Autónoma de Madrid , Cantoblanco, 28049 Madrid , Spain
| | - Gen Li
- Department of Chemistry , Massachusetts Institute of Technology , 02139 Cambridge , Massachusetts , United States
| | - Alexander T Radosevich
- Department of Chemistry , Massachusetts Institute of Technology , 02139 Cambridge , Massachusetts , United States
| |
Collapse
|
23
|
Pickel TC, Akondi SM, Liebeskind LS. Esterification by Redox Dehydration Using Diselenides as Catalytic Organooxidants. J Org Chem 2019; 84:4954-4960. [PMID: 30742771 DOI: 10.1021/acs.joc.8b02765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ortho-functionalized aryl diselenides are catalytic (5.0 mol %) oxidants for the construction of esters from carboxylic acids and alcohols in the presence of stoichiometric triethyl phosphite and dioxygen in air as the terminal redox reagents (redox dehydration conditions). The reaction proceeds through the intermediacy of the anhydride and requires the presence of 10% DMAP to drive the esterification.
Collapse
Affiliation(s)
- Thomas C Pickel
- Department of Chemistry , Emory University , 1515 Dickey Drive , Atlanta , Georgia 30322 , United States
| | - Srirama Murthy Akondi
- Department of Chemistry , Emory University , 1515 Dickey Drive , Atlanta , Georgia 30322 , United States
| | - Lanny S Liebeskind
- Department of Chemistry , Emory University , 1515 Dickey Drive , Atlanta , Georgia 30322 , United States
| |
Collapse
|
24
|
Dong C, Wu L, Yao J, Wei K. Palladium-Catalyzed β-C–H Arylation of Aliphatic Aldehydes and Ketones Using Amino Amide as a Transient Directing Group. Org Lett 2019; 21:2085-2089. [DOI: 10.1021/acs.orglett.9b00366] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Cong Dong
- School of Chemical Science and Technology, Yunnan University, Kunming 650091 People’s Republic of China
| | - Liangfei Wu
- School of Chemical Science and Technology, Yunnan University, Kunming 650091 People’s Republic of China
| | - Jianwei Yao
- School of Chemical Science and Technology, Yunnan University, Kunming 650091 People’s Republic of China
| | - Kun Wei
- School of Chemical Science and Technology, Yunnan University, Kunming 650091 People’s Republic of China
| |
Collapse
|
25
|
Hirao T. Synthetic Strategy: Palladium-Catalyzed Dehydrogenation of Carbonyl Compounds. J Org Chem 2019; 84:1687-1692. [PMID: 30668104 DOI: 10.1021/acs.joc.8b03117] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Palladium-catalyzed oxidative α,β-dehydrogenation (oxidative desilylation, decarboxylative dehydrogenation, direct dehydrogenation, and oxidative dehydroboration) of carbonyl compounds and their derivatives to α,β-unsaturated carbonyl compounds via palladium enolate intermediates is reviewed as a versatile synthetic method.
Collapse
Affiliation(s)
- Toshikazu Hirao
- The Institute of Scientific and Industrial Research , Osaka University , Mihoga-oka, Ibaraki , Osaka 567-0047 , Japan
| |
Collapse
|
26
|
Affiliation(s)
- Michael Martin Nielsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | | |
Collapse
|
27
|
Abstract
A collective asymmetric total synthesis of lundurines A-C using l-pyroglutamic acid derived from the chiral pool is described. The key steps include a tandem reductive amination/lactamization sequence to introduce the pyrrolidinone ring, a palladium-catalyzed intramolecular direct C-H vinylation of indole to construct the crucial polyhydroazocine ring, and a Lewis acid promoted formal [3 + 2] cycloaddition/N2 extrusion process to install the polysubstituted cyclopropyl ring.
Collapse
Affiliation(s)
- Wei Xu
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| | - Jianfei Zhao
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| | - Cheng Tao
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| | - Huifei Wang
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology , Shenzhen Graduate School of Peking University , Shenzhen 518055 , China
| | - Yun Li
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| | - Bin Cheng
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| | - Hongbin Zhai
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China.,Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology , Shenzhen Graduate School of Peking University , Shenzhen 518055 , China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071 , China
| |
Collapse
|
28
|
Akondi SM, Gangireddy P, Pickel TC, Liebeskind LS. Aerobic, Diselenide-Catalyzed Redox Dehydration: Amides and Peptides. Org Lett 2018; 20:538-541. [PMID: 29323920 DOI: 10.1021/acs.orglett.7b03620] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
At 2.5 mol % loadings using reaction temperatures between 30-55 °C, ortho-functionalized diaryl diselenides are highly effective organocatalytic oxidants for aerobic redox dehydrative amidic and peptidic bond formation using triethyl phosphite as a simple terminal reductant. This simple-to-perform organocatalytic reaction relies on the ability of selenols to react directly with dioxygen in air without recourse to metal catalysts. It represents an important step toward the development of a general, economical, and benign catalytic redox dehydration protocol.
Collapse
Affiliation(s)
- Srirama Murthy Akondi
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Pavankumar Gangireddy
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Thomas C Pickel
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Lanny S Liebeskind
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
29
|
Hong K, Park H, Yu JQ. Methylene C(sp 3)-H Arylation of Aliphatic Ketones Using a Transient Directing Group. ACS Catal 2017; 7:6938-6941. [PMID: 29038742 PMCID: PMC5640319 DOI: 10.1021/acscatal.7b02905] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Palladium-catalyzed methylene β-C(sp3)-H arylation of aliphatic ketones using a transient directing group is developed. The use of α-benzyl β-alanine directing group that forms a six-membered chelation with palladium is crucial for promoting the methylene C(sp3)-H bond activation.
Collapse
Affiliation(s)
- Kai Hong
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037
| | - Hojoon Park
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037
| |
Collapse
|
30
|
Zhu RY, Liu LY, Yu JQ. Highly Versatile β-C(sp 3)-H Iodination of Ketones Using a Practical Auxiliary. J Am Chem Soc 2017; 139:12394-12397. [PMID: 28844134 PMCID: PMC5710739 DOI: 10.1021/jacs.7b06851] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The first example of palladium(II)-catalyzed β-C(sp3)-H iodination of a wide range of ketones using a commercially available aminooxyacetic acid auxiliary has been achieved. This L, X-type directing group overcomes the limitations of the transient directing group approach for C(sp3)-H functionalization of ketones. Practical advantages of this method include simple installation of the auxiliary without chromatography, exceptional tolerance of α-functional groups, as well as alkenes and alkynes, and rapid access to diverse sterically hindered quaternary centers.
Collapse
Affiliation(s)
- Ru-Yi Zhu
- Department of Chemistry, The Scripps Research Institute , 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Luo-Yan Liu
- Department of Chemistry, The Scripps Research Institute , 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute , 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
31
|
Hönig M, Sondermann P, Turner NJ, Carreira EM. Enantioselective Chemo- and Biocatalysis: Partners in Retrosynthesis. Angew Chem Int Ed Engl 2017; 56:8942-8973. [DOI: 10.1002/anie.201612462] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Moritz Hönig
- Laboratorium für Organische Chemie; Eidgenössische Technische Hochschule Zürich; Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Philipp Sondermann
- Laboratorium für Organische Chemie; Eidgenössische Technische Hochschule Zürich; Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Nicholas J. Turner
- Manchester Institute of Biotechnology & School of Chemistry; University of Manchester; 131 Princess Street Manchester M1 7DN UK
| | - Erick M. Carreira
- Laboratorium für Organische Chemie; Eidgenössische Technische Hochschule Zürich; Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| |
Collapse
|
32
|
Hönig M, Sondermann P, Turner NJ, Carreira EM. Enantioselektive Chemo- und Biokatalyse: Partner in der Retrosynthese. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201612462] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Moritz Hönig
- Laboratorium für Organische Chemie; Eidgenössische Technische Hochschule Zürich; Vladimir-Prelog-Weg 3 8093 Zürich Schweiz
| | - Philipp Sondermann
- Laboratorium für Organische Chemie; Eidgenössische Technische Hochschule Zürich; Vladimir-Prelog-Weg 3 8093 Zürich Schweiz
| | - Nicholas J. Turner
- Manchester Institute of Biotechnology & School of Chemistry; University of Manchester; 131 Princess Street Manchester M1 7DN UK
| | - Erick M. Carreira
- Laboratorium für Organische Chemie; Eidgenössische Technische Hochschule Zürich; Vladimir-Prelog-Weg 3 8093 Zürich Schweiz
| |
Collapse
|
33
|
Acylative kinetic resolution of racemic aromatic β-hydroxy esters catalyzed by chiral nucleophilic N -(1-arylethyl)benzoguanidines. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.tetasy.2017.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Huang H, Kang JY. Oxidation-Reduction Condensation of Diazaphosphites for Carbon-Heteroatom Bond Formation Based on Mitsunobu Mechanism. Org Lett 2017; 19:544-547. [PMID: 28107019 DOI: 10.1021/acs.orglett.6b03709] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An efficient oxidation-reduction condensation reaction of diazaphosphites with various nonacidic pronucleophiles in the presence of DIAD as a weak oxidant has been developed for carbon-heteroatom bond formation. This mild process affords structurally diverse tertiary amines, secondary amines, esters, ethers, and thioethers in moderate to excellent yields. The selective synthesis of secondary amines from primary amines has been achieved. Importantly, a practical application to the synthesis of antiparkinsonian agent piribedil has been demonstrated.
Collapse
Affiliation(s)
- Hai Huang
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas , 4505 South Maryland Parkway, Las Vegas, Nevada 89154-4003, United States.,Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Nanjing Tech University , No. 30 Puzhu Road (S), Nanjing 211816, People's Republic of China
| | - Jun Yong Kang
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas , 4505 South Maryland Parkway, Las Vegas, Nevada 89154-4003, United States
| |
Collapse
|
35
|
Sakamoto Y, Amaya T, Suzuki T, Hirao T. Palladium(II)-Catalyzed Dehydroboration via Generation of Boron Enolates. Chemistry 2016; 22:18686-18689. [PMID: 27734542 DOI: 10.1002/chem.201604306] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Indexed: 02/01/2023]
Abstract
The PdII -catalyzed dehydroboration of boron enolates generated from ketones and 9-iodo-9-borabicyclo[3.3.1]nonane was achieved, providing a synthetically versatile protocol from ketones to α,β-unsaturated ketones. The PdII compound employed in this reaction worked catalytically in the presence of Cu(OAc)2 . The high trans-selectivity of the olefinic moiety was observed. Aryl halide moieties (-Br and -Cl) remained intact for this reaction in spite of the presence of a Pd species. An ester substrate could also be applied when a stoichiometric amount of PdII was used. The crossover reactions using boron and silyl enolates revealed that the oxidation reaction is much faster than the Saegusa-Ito reaction.
Collapse
Affiliation(s)
- Yuki Sakamoto
- The Institute of Scientific and Industrial Research, Osaka University, Mihoga-oka, Ibaraki, Osaka, 567-0047, Japan
| | - Toru Amaya
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Takeyuki Suzuki
- The Institute of Scientific and Industrial Research, Osaka University, Mihoga-oka, Ibaraki, Osaka, 567-0047, Japan
| | - Toshikazu Hirao
- The Institute of Scientific and Industrial Research, Osaka University, Mihoga-oka, Ibaraki, Osaka, 567-0047, Japan
| |
Collapse
|
36
|
Yamada A, Nakata K. (R)-(+)-N-Methylbenzoguanidine ((R)-NMBG) catalyzed acylative kinetic resolution of racemic 3-hydroxy-3-aryl-propanoates. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
37
|
Konishi A, Minami Y, Hosoi T, Chiba K, Yasuda M. First Isolation and Characterization of the Highly Coordinated Group 14 Enolates: Effects of the Coordination Controls on the Geometry and Tautomerization of Germyl Enolates. Chemistry 2016; 22:12688-91. [PMID: 27377796 DOI: 10.1002/chem.201603147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Indexed: 11/09/2022]
Abstract
The Group 14 enolates play an important part in many organic reactions. Herein, the reduction of an α-bromo ketone with germanium(II) salts cleanly afforded the corresponding germyl enolate as an isolatable species. This experimental reductive generation of a germyl enolate enabled us to characterize both C- and O-bound tautomers derived from an identical precursor and to unveil the tautomeric mechanisms, including the kinetic parameters and the relative stability of these tautomers, along with confirmation from DFT calculations. Moreover, the highly coordinated germyl enolates were isolated by a stabilization process induced by adding ligands. All products were characterized by NMR spectroscopy and X-ray crystallography.
Collapse
Affiliation(s)
- Akihito Konishi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yohei Minami
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takahisa Hosoi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kouji Chiba
- Science and Technology System Division, Ryoka Systems Inc., Tokyo Skytree East Tower, 1-1-2 Oshiage, Sumida-ku, Tokyo, 131-0045, Japan
| | - Makoto Yasuda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
38
|
Patil V, Barragan E, Patil SA, Patil SA, Bugarin A. Direct Synthesis and Antimicrobial Evaluation of Structurally Complex Chalcones. ChemistrySelect 2016. [DOI: 10.1002/slct.201600703] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Vikrant Patil
- Centre for Nano & Material Sciences; Jain University; Jain Global Campus; Bangalore 562112, Karnataka India
| | - Enrique Barragan
- Department of Chemistry & Biochemistry; University of Texas at Arlington; Arlington TX 76019 USA
| | - Shivaputra A. Patil
- Pharmaceutical Sciences Department, College of Pharmacy; Rosalind Franklin University of Medicine and Science; 3333 Green Bay Road North Chicago IL 60064, USA
| | - Siddappa A. Patil
- Centre for Nano & Material Sciences; Jain University; Jain Global Campus; Bangalore 562112, Karnataka India
| | - Alejandro Bugarin
- Department of Chemistry & Biochemistry; University of Texas at Arlington; Arlington TX 76019 USA
| |
Collapse
|
39
|
Abstract
In contrast to the conventional group transfer polymerization (GTP) using a catalyst of either an anionic nucleophile or a transition-metal compound, the organocatalyzed GTP has to a great extent improved the living characteristics of the polymerization from the viewpoints of synthesizing structurally well-defined acrylic polymers and constructing defect-free polymer architectures. In this article, we describe the organocatalyzed GTP from a relatively personal perspective to provide our colleagues with a perspicuous and systematic overview on its recent progress as well as a reply to the curiosity of how excellently the organocatalysts have performed in this field. The stated perspectives of this review mainly cover five aspects, in terms of the assessment of the livingness of the polymerization, limit and scope of applicable monomers, mechanistic studies, control of the polymer structure, and a new GTP methodology involving the use of tris(pentafluorophenyl)borane and hydrosilane.
Collapse
Affiliation(s)
- Yougen Chen
- Institute for Advanced Study Shenzhen University, Nanshan District Shenzhen, Guangdong, 518060, P. R. China. .,Frontier Chemistry Center Faculty of Engineering Hokkaido University, N13 W8, Sapporo, 060-8628, Japan.
| | - Toyoji Kakuchi
- Frontier Chemistry Center Faculty of Engineering Hokkaido University, N13 W8, Sapporo, 060-8628, Japan.,Research Center for Polymer Materials School of Materials Science and Engineering Changchun University of Science and Technology, Weixing Road 7989, Changchun Jilin, 130022, P. R. China
| |
Collapse
|
40
|
Liebeskind LS, Gangireddy P, Lindale MG. Benzoisothiazolone Organo/Copper-Cocatalyzed Redox Dehydrative Construction of Amides and Peptides from Carboxylic Acids using (EtO)3P as the Reductant and O2 in Air as the Terminal Oxidant. J Am Chem Soc 2016; 138:6715-8. [PMID: 27175892 DOI: 10.1021/jacs.6b03168] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Carboxylic acids and amine/amino acid reactants can be converted to amides and peptides at neutral pH within 5-36 h at 50 °C using catalytic quantities of a redox-active benzoisothiazolone and a copper complex. These catalytic "oxidation-reduction condensation" reactions are carried out open to dry air using O2 as the terminal oxidant and a slight excess of triethyl phosphite as the reductant. Triethyl phosphate is the easily removed byproduct. These simple-to-run catalytic reactions provide practical and economical procedures for the acylative construction of C-N bonds.
Collapse
Affiliation(s)
- Lanny S Liebeskind
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Pavankumar Gangireddy
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Matthew G Lindale
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
41
|
Kanbayashi N, Yamazawa A, Takii K, Okamura TA, Onitsuka K. Planar-Chiral Cyclopentadienyl-Ruthenium-Catalyzed Regio- and Enantioselective Asymmetric Allylic Alkylation of Silyl Enolates under Unusually Mild Conditions. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201500970] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
42
|
Gorunova ON, Novitskiy IM, Grishin YK, Gloriozov IP, Roznyatovsky VA, Khrustalev VN, Kochetkov KA, Dunina VV. Determination of the Absolute Configuration of CN-Palladacycles by 31P{1H} NMR Spectroscopy Using (1R,2S,5R)-Menthyloxydiphenylphosphine as the Chiral Derivatizing Agent: Efficient Chirality Transfer in Phosphinite Adducts. Organometallics 2016. [DOI: 10.1021/acs.organomet.5b00706] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Olga N. Gorunova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Street 28, 119991 Moscow, Russian Federation
| | - Ivan M. Novitskiy
- Department
of Chemistry, M.V. Lomonosov Moscow State University, Lenin Hills, 119991, Moscow, Russian Federation
| | - Yuri K. Grishin
- Department
of Chemistry, M.V. Lomonosov Moscow State University, Lenin Hills, 119991, Moscow, Russian Federation
| | - Igor P. Gloriozov
- Department
of Chemistry, M.V. Lomonosov Moscow State University, Lenin Hills, 119991, Moscow, Russian Federation
| | - Vitaly A. Roznyatovsky
- Department
of Chemistry, M.V. Lomonosov Moscow State University, Lenin Hills, 119991, Moscow, Russian Federation
| | - Victor N. Khrustalev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Street 28, 119991 Moscow, Russian Federation
- Inorganic Chemistry Department, Peoples’ Friendship University of Russia, Miklukho-Maklay Street 6, 117198 Moscow, Russian Federation
| | - Konstantin A. Kochetkov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Street 28, 119991 Moscow, Russian Federation
| | - Valery V. Dunina
- Department
of Chemistry, M.V. Lomonosov Moscow State University, Lenin Hills, 119991, Moscow, Russian Federation
| |
Collapse
|
43
|
|
44
|
Konishi A, Yasunaga R, Chiba K, Yasuda M. Synthesis, characterization, and properties of a benzofuran-based cage-shaped borate: photo activation of Lewis acid catalysts. Chem Commun (Camb) 2016; 52:3348-51. [DOI: 10.1039/c6cc00291a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A benzofuran-based cage-shaped borate showed a higher degree of Lewis acidity and exhibited photo-activated catalytic activity under black-light irradiation.
Collapse
Affiliation(s)
- Akihito Konishi
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- Suita
- Japan
| | - Ryosuke Yasunaga
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- Suita
- Japan
| | - Kouji Chiba
- Science and Technology System Division
- Ryoka Systems Inc
- Sumida-ku
- Japan
| | - Makoto Yasuda
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- Suita
- Japan
| |
Collapse
|
45
|
Kato T, Matsuoka SI, Suzuki M. N-Heterocyclic carbene-mediated redox condensation of alcohols. Chem Commun (Camb) 2016; 52:8569-72. [DOI: 10.1039/c6cc04154j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
N-Heterocyclic carbenes (NHCs) with a variety of oxidants promote the Mitsunobu-type coupling reactions of alcohols with phenols, carboxylic acids, and phthalimide.
Collapse
Affiliation(s)
- Terumasa Kato
- Department of Life Science and Applied Chemistry
- Graduate School of Engineering
- Nagoya Institute of Technology
- Nagoya
- Japan
| | - Shin-ichi Matsuoka
- Department of Life Science and Applied Chemistry
- Graduate School of Engineering
- Nagoya Institute of Technology
- Nagoya
- Japan
| | - Masato Suzuki
- Department of Life Science and Applied Chemistry
- Graduate School of Engineering
- Nagoya Institute of Technology
- Nagoya
- Japan
| |
Collapse
|
46
|
Kunigami M, Hara S. Synthesis of glycosyl fluorides from (phenylthio)glycosides using IF5-pyridine-HF. Carbohydr Res 2015; 417:78-80. [PMID: 26432611 DOI: 10.1016/j.carres.2015.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/15/2015] [Accepted: 08/12/2015] [Indexed: 10/23/2022]
Abstract
IF5-pyridine-HF, an air- and moisture-stable fluorinating reagent, was applied to the synthesis of glycosyl fluorides from (phenylthio)glycosides. Common protecting groups of alcohol and diol can tolerate the reaction conditions performed, and therefore, the present method is applicable to the synthesis of various glycosyl fluorides.
Collapse
Affiliation(s)
- Masataka Kunigami
- Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Shoji Hara
- Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
| |
Collapse
|
47
|
Sameera WMC, Hatanaka M, Kitanosono T, Kobayashi S, Morokuma K. The Mechanism of Iron(II)-Catalyzed Asymmetric Mukaiyama Aldol Reaction in Aqueous Media: Density Functional Theory and Artificial Force-Induced Reaction Study. J Am Chem Soc 2015; 137:11085-94. [DOI: 10.1021/jacs.5b05835] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- W. M. C. Sameera
- Fukui
Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| | - Miho Hatanaka
- Fukui
Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| | - Taku Kitanosono
- Department
of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shu̅ Kobayashi
- Department
of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keiji Morokuma
- Fukui
Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| |
Collapse
|
48
|
Gorunova ON, Novitskiy IM, Livantsov MV, Grishin YK, Kochetkov KA, Dunina VV. Enantiopurity determination of CN-palladacycles using 31P NMR spectroscopy with (1R,2S,5R)-menthyloxydiphenylphosphine as chiral derivatizing agent. J Organomet Chem 2015. [DOI: 10.1016/j.jorganchem.2015.02.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
49
|
Ikeda N, Konno T. Highly regio- and stereoselective hydrosilylation of β-fluoroalkylated α,β-unsaturated ketones. J Fluor Chem 2015. [DOI: 10.1016/j.jfluchem.2015.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
50
|
He L, Guo H, Wang Y, Du GF, Dai B. N-heterocyclic carbene-mediated transformations of silicon reagents. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.01.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|