1
|
Santos-Aberturas J, Vior NM. Beyond Soil-Dwelling Actinobacteria: Fantastic Antibiotics and Where to Find Them. Antibiotics (Basel) 2022; 11:195. [PMID: 35203798 PMCID: PMC8868522 DOI: 10.3390/antibiotics11020195] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 12/10/2022] Open
Abstract
Bacterial secondary metabolites represent an invaluable source of bioactive molecules for the pharmaceutical and agrochemical industries. Although screening campaigns for the discovery of new compounds have traditionally been strongly biased towards the study of soil-dwelling Actinobacteria, the current antibiotic resistance and discovery crisis has brought a considerable amount of attention to the study of previously neglected bacterial sources of secondary metabolites. The development and application of new screening, sequencing, genetic manipulation, cultivation and bioinformatic techniques have revealed several other groups of bacteria as producers of striking chemical novelty. Biosynthetic machineries evolved from independent taxonomic origins and under completely different ecological requirements and selective pressures are responsible for these structural innovations. In this review, we summarize the most important discoveries related to secondary metabolites from alternative bacterial sources, trying to provide the reader with a broad perspective on how technical novelties have facilitated the access to the bacterial metabolic dark matter.
Collapse
Affiliation(s)
| | - Natalia M. Vior
- Department of Molecular Microbiology, John Innes Centre, Norwich NR7 4UH, UK
| |
Collapse
|
2
|
Thiede S, Wosniok PR, Herkommer D, Debnar T, Tian M, Wang T, Schrempp M, Menche D. Total Synthesis of Leupyrrins A1and B1, Highly Potent Antifungal Agents from the MyxobacteriumSorangium cellulosum. Chemistry 2016; 23:3300-3320. [DOI: 10.1002/chem.201604445] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Indexed: 01/17/2023]
Affiliation(s)
- Sebastian Thiede
- Kekulé-Institut für Organische Chemie und Biochemie; Universität Bonn; Gerhard-Domagk-Str. 1 53121 Bonn Germany
| | - Paul R. Wosniok
- Kekulé-Institut für Organische Chemie und Biochemie; Universität Bonn; Gerhard-Domagk-Str. 1 53121 Bonn Germany
| | - Daniel Herkommer
- Kekulé-Institut für Organische Chemie und Biochemie; Universität Bonn; Gerhard-Domagk-Str. 1 53121 Bonn Germany
- Current address: GlaxoSmithKline, Medicines Research Centre; Gunnels Wood Road Stevenage SG1 2NY UK
| | - Thomas Debnar
- Kekulé-Institut für Organische Chemie und Biochemie; Universität Bonn; Gerhard-Domagk-Str. 1 53121 Bonn Germany
- Current address: Dottikon Exclusive Synthesis AG; Dottikon Switzerland
| | - Maoqun Tian
- Kekulé-Institut für Organische Chemie und Biochemie; Universität Bonn; Gerhard-Domagk-Str. 1 53121 Bonn Germany
- Current address: Scripps Research Institute; La Jolla USA
| | - Tongtong Wang
- Kekulé-Institut für Organische Chemie und Biochemie; Universität Bonn; Gerhard-Domagk-Str. 1 53121 Bonn Germany
- Current address: Institute of Quality Standard and Testing Technology for Agro-products; Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-food Safety and Quality; Ministry of Agriculture; Beijing China
| | - Michael Schrempp
- Kekulé-Institut für Organische Chemie und Biochemie; Universität Bonn; Gerhard-Domagk-Str. 1 53121 Bonn Germany
| | - Dirk Menche
- Kekulé-Institut für Organische Chemie und Biochemie; Universität Bonn; Gerhard-Domagk-Str. 1 53121 Bonn Germany
| |
Collapse
|
3
|
Thiede S, Wosniok PR, Herkommer D, Schulz-Fincke AC, Gütschow M, Menche D. Total Synthesis of Leupyrrin B1: A Potent Inhibitor of Human Leukocyte Elastase. Org Lett 2016; 18:3964-7. [DOI: 10.1021/acs.orglett.6b01724] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sebastian Thiede
- Kekulé-Institut für
Organische Chemie und Biochemie and ‡Pharmazeutisches
Institut, Universität Bonn, D-53121 Bonn, Germany
| | - Paul R. Wosniok
- Kekulé-Institut für
Organische Chemie und Biochemie and ‡Pharmazeutisches
Institut, Universität Bonn, D-53121 Bonn, Germany
| | - Daniel Herkommer
- Kekulé-Institut für
Organische Chemie und Biochemie and ‡Pharmazeutisches
Institut, Universität Bonn, D-53121 Bonn, Germany
| | - Anna-Christina Schulz-Fincke
- Kekulé-Institut für
Organische Chemie und Biochemie and ‡Pharmazeutisches
Institut, Universität Bonn, D-53121 Bonn, Germany
| | - Michael Gütschow
- Kekulé-Institut für
Organische Chemie und Biochemie and ‡Pharmazeutisches
Institut, Universität Bonn, D-53121 Bonn, Germany
| | - Dirk Menche
- Kekulé-Institut für
Organische Chemie und Biochemie and ‡Pharmazeutisches
Institut, Universität Bonn, D-53121 Bonn, Germany
| |
Collapse
|
4
|
Hemmerling F, Hahn F. Biosynthesis of oxygen and nitrogen-containing heterocycles in polyketides. Beilstein J Org Chem 2016; 12:1512-50. [PMID: 27559404 PMCID: PMC4979870 DOI: 10.3762/bjoc.12.148] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/22/2016] [Indexed: 01/01/2023] Open
Abstract
This review highlights the biosynthesis of heterocycles in polyketide natural products with a focus on oxygen and nitrogen-containing heterocycles with ring sizes between 3 and 6 atoms. Heterocycles are abundant structural elements of natural products from all classes and they often contribute significantly to their biological activity. Progress in recent years has led to a much better understanding of their biosynthesis. In this context, plenty of novel enzymology has been discovered, suggesting that these pathways are an attractive target for future studies.
Collapse
Affiliation(s)
- Franziska Hemmerling
- Institut für Organische Chemie and Zentrum für Biomolekulare Wirkstoffe, Gottfried Wilhelm Leibniz Universität Hannover, Schneiderberg 38, 30167 Hannover, Germany; Fakultät für Biologie, Chemie und Geowissenschaften, Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Frank Hahn
- Institut für Organische Chemie and Zentrum für Biomolekulare Wirkstoffe, Gottfried Wilhelm Leibniz Universität Hannover, Schneiderberg 38, 30167 Hannover, Germany; Fakultät für Biologie, Chemie und Geowissenschaften, Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| |
Collapse
|
5
|
Abstract
A new hypothetic biosynthesis of the tricyclic spiroketal core of ascospiroketals A and B is proposed, which guided the development of a novel synthetic strategy for the asymmetric total synthesis of ent-ascospiroketals A and B. The synthesis features an efficient ring contraction rearrangement of the 10-membered lactone to the tricyclic spiroketal cis-fused γ-lactone core, which served as the common intermediate for the synthesis of both ent-ascospiroketals A and B through the Stille coupling reaction at the final step. In addition, seven diastereomers were prepared to conclusively confirm the structure of ent-ascospiroketal B.
Collapse
Affiliation(s)
- Jian Wang
- Department of Chemistry, The Hong Kong University of Science and Technology , Clearwater Bay, Kowloon, Hong Kong, China
| | - Rongbiao Tong
- Department of Chemistry, The Hong Kong University of Science and Technology , Clearwater Bay, Kowloon, Hong Kong, China
| |
Collapse
|
6
|
Schrempp M, Thiede S, Herkommer D, Gansäuer A, Menche D. Synthesis of α‐Chiral Butyrolactones by Highly Stereoselective Radical Transfer or Sequential Asymmetric Alkylations: Concise Preparation of Leupyrrin Moieties. Chemistry 2015; 21:16266-71. [DOI: 10.1002/chem.201502263] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Michael Schrempp
- Kekulé‐Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard‐Domagk‐Str. 1, 53121 Bonn (Germany)
| | - Sebastian Thiede
- Kekulé‐Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard‐Domagk‐Str. 1, 53121 Bonn (Germany)
| | - Daniel Herkommer
- Kekulé‐Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard‐Domagk‐Str. 1, 53121 Bonn (Germany)
| | - Andreas Gansäuer
- Kekulé‐Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard‐Domagk‐Str. 1, 53121 Bonn (Germany)
| | - Dirk Menche
- Kekulé‐Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard‐Domagk‐Str. 1, 53121 Bonn (Germany)
| |
Collapse
|
7
|
Herkommer D, Thiede S, Wosniok PR, Dreisigacker S, Tian M, Debnar T, Irschik H, Menche D. Stereochemical Determination of the Leupyrrins and Total Synthesis of Leupyrrin A1. J Am Chem Soc 2015; 137:4086-9. [DOI: 10.1021/jacs.5b01894] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniel Herkommer
- Kekulé-Institut
für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
| | - Sebastian Thiede
- Kekulé-Institut
für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
| | - Paul R. Wosniok
- Kekulé-Institut
für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
| | - Sandra Dreisigacker
- Kekulé-Institut
für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
| | - Maoqun Tian
- Kekulé-Institut
für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
| | - Thomas Debnar
- Kekulé-Institut
für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
| | - Herbert Irschik
- Microbial
Drugs, Helmholtz Centre for Infection Research (HZI), Inhoffenstr. 7, D-38124 Braunschweig, Germany
| | - Dirk Menche
- Kekulé-Institut
für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
| |
Collapse
|
8
|
Herkommer D, Schmalzbauer B, Menche D. Sequential catalysis for stereoselective synthesis of complex polyketides. Nat Prod Rep 2014; 31:456-67. [DOI: 10.1039/c3np70093c] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Debnar T, Wang T, Menche D. Stereoselective Synthesis of the Butyrolactone and the Oxazoline/Furan Fragment of Leupyrrin A1. Org Lett 2013; 15:2774-7. [DOI: 10.1021/ol401110x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Thomas Debnar
- University of Bonn, Kekule-Intitute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany
| | - Tongtong Wang
- University of Bonn, Kekule-Intitute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany
| | - Dirk Menche
- University of Bonn, Kekule-Intitute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany
| |
Collapse
|
10
|
Debnar T, Dreisigacker S, Menche D. Highly regioselective opening of zirconacyclopentadienes by remote coordination: concise synthesis of the furan core of the leupyrrins. Chem Commun (Camb) 2013; 49:725-7. [DOI: 10.1039/c2cc37678d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Kopp M, Irschik H, Gemperlein K, Buntin K, Meiser P, Weissman KJ, Bode HB, Müller R. Insights into the complex biosynthesis of the leupyrrins in Sorangium cellulosum So ce690. MOLECULAR BIOSYSTEMS 2011; 7:1549-63. [PMID: 21365089 DOI: 10.1039/c0mb00240b] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The anti-fungal leupyrrins are secondary metabolites produced by several strains of the myxobacterium Sorangium cellulosum. These intriguing compounds incorporate an atypically substituted γ-butyrolactone ring, as well as pyrrole and oxazolinone functionalities, which are located within an unusual asymmetrical macrodiolide. Previous feeding studies revealed that this novel structure arises from the homologation of four distinct structural units, nonribosomally-derived peptide, polyketide, isoprenoid and a dicarboxylic acid, coupled with modification of the various building blocks. Here we have attempted to reconcile the biosynthetic pathway proposed on the basis of the feeding studies with the underlying enzymatic machinery in the S. cellulosum strain So ce690. Gene products can be assigned to many of the suggested steps, but inspection of the gene set provokes the reconsideration of several key transformations. We support our analysis by the reconstitution in vitro of the biosynthesis of the pyrrole carboxylic starter unit along with gene inactivation. In addition, this study reveals that a significant proportion of the genes for leupyrrin biosynthesis are located outside the core cluster, a 'split' organization which is increasingly characteristic of the myxobacteria. Finally, we report the generation of four novel deshydroxy leupyrrin analogues by genetic engineering of the pathway.
Collapse
Affiliation(s)
- Maren Kopp
- Helmholtz Institute for Pharmaceutical Research, Helmholtz Center for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, PO Box 151150, 66041 Saarbrücken, Germany
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Wilson MC, Nam SJ, Gulder TAM, Kauffman CA, Jensen PR, Fenical W, Moore BS. Structure and biosynthesis of the marine streptomycete ansamycin ansalactam A and its distinctive branched chain polyketide extender unit. J Am Chem Soc 2011; 133:1971-7. [PMID: 21247149 PMCID: PMC3091981 DOI: 10.1021/ja109226s] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reported is the structure and biosynthesis of ansalactam A, an ansamycin class polyketide produced by an unusual modification of the polyketide pathway. This new metabolite, produced by a marine sediment-derived bacterium of the genus Streptomyces , possesses a novel spiro γ-lactam moiety and a distinctive isobutyryl polyketide fragment observed for the first time in this class of natural products. The structure of ansalactam A was defined by spectroscopic methods including X-ray crystallographic analysis. Biosynthetic studies with stable isotopes further led to the discovery of a new, branched chain polyketide synthase extender unit derived from (E)-4-methyl-2-pentenoic acid for polyketide assembly observed for the first time in this class of natural products.
Collapse
Affiliation(s)
- Micheal C Wilson
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093-0204, United States
| | | | | | | | | | | | | |
Collapse
|
13
|
Walsh CT, Fischbach MA. Natural products version 2.0: connecting genes to molecules. J Am Chem Soc 2010; 132:2469-93. [PMID: 20121095 DOI: 10.1021/ja909118a] [Citation(s) in RCA: 326] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Natural products have played a prominent role in the history of organic chemistry, and they continue to be important as drugs, biological probes, and targets of study for synthetic and analytical chemists. In this Perspective, we explore how connecting Nature's small molecules to the genes that encode them has sparked a renaissance in natural product research, focusing primarily on the biosynthesis of polyketides and non-ribosomal peptides. We survey monomer biogenesis, coupling chemistries from templated and non-templated pathways, and the broad set of tailoring reactions and hybrid pathways that give rise to the diverse scaffolds and functionalization patterns of natural products. We conclude by considering two questions: What would it take to find all natural product scaffolds? What kind of scientists will be studying natural products in the future?
Collapse
Affiliation(s)
- Christopher T Walsh
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
14
|
Ewen KM, Hannemann F, Khatri Y, Perlova O, Kappl R, Krug D, Hüttermann J, Müller R, Bernhardt R. Genome mining in Sorangium cellulosum So ce56: identification and characterization of the homologous electron transfer proteins of a myxobacterial cytochrome P450. J Biol Chem 2009; 284:28590-8. [PMID: 19696019 DOI: 10.1074/jbc.m109.021717] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Myxobacteria, especially members of the genus Sorangium, are known for their biotechnological potential as producers of pharmaceutically valuable secondary metabolites. The biosynthesis of several of those myxobacterial compounds includes cytochrome P450 activity. Although class I cytochrome P450 enzymes occur wide-spread in bacteria and rely on ferredoxins and ferredoxin reductases as essential electron mediators, the study of these proteins is often neglected. Therefore, we decided to search in the Sorangium cellulosum So ce56 genome for putative interaction partners of cytochromes P450. In this work we report the investigation of eight myxobacterial ferredoxins and two ferredoxin reductases with respect to their activity in cytochrome P450 systems. Intriguingly, we found not only one, but two ferredoxins whose ability to sustain an endogenous So ce56 cytochrome P450 was demonstrated by CYP260A1-dependent conversion of nootkatone. Moreover, we could demonstrate that the two ferredoxins were able to receive electrons from both ferredoxin reductases. These findings indicate that S. cellulosum can alternate between different electron transport pathways to sustain cytochrome P450 activity.
Collapse
Affiliation(s)
- Kerstin Maria Ewen
- Department of Biochemistry, Saarland University, D-66041 Saarbrücken, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Isoprenoids are essential for fruiting body formation in Myxococcus xanthus. J Bacteriol 2009; 191:5849-53. [PMID: 19617362 DOI: 10.1128/jb.00539-09] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It was recently shown that Myxococcus xanthus harbors an alternative and reversible biosynthetic pathway to isovaleryl coenzyme A (CoA) branching from 3-hydroxy-3-methylglutaryl-CoA. Analyses of various mutants in these pathways for fatty acid profiles and fruiting body formation revealed for the first time the importance of isoprenoids for myxobacterial development.
Collapse
|
16
|
A brief tour of myxobacterial secondary metabolism. Bioorg Med Chem 2009; 17:2121-36. [DOI: 10.1016/j.bmc.2008.11.025] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 11/07/2008] [Accepted: 11/11/2008] [Indexed: 12/16/2022]
|
17
|
Bode HB, Ring MW, Schwär G, Altmeyer MO, Kegler C, Jose IR, Singer M, Müller R. Identification of additional players in the alternative biosynthesis pathway to isovaleryl-CoA in the myxobacterium Myxococcus xanthus. Chembiochem 2009; 10:128-40. [PMID: 18846531 DOI: 10.1002/cbic.200800219] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Isovaleryl-CoA (IV-CoA) is usually derived from the degradation of leucine by using the Bkd (branched-chain keto acid dehydrogenase) complex. We have previously identified an alternative pathway for IV-CoA formation in myxobacteria that branches from the well-known mevalonate-dependent isoprenoid biosynthesis pathway. We identified 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase (MvaS) to be involved in this pathway in Myxococcus xanthus, which is induced in mutants with impaired leucine degradation (e.g., bkd(-)) or during myxobacterial fruiting-body formation. Here, we show that the proteins required for leucine degradation are also involved in the alternative IV-CoA biosynthesis pathway through the efficient catalysis of the reverse reactions. Moreover, we conducted a global gene-expression experiment and compared vegetative wild-type cells with bkd mutants, and identified a five-gene operon that is highly up-regulated in bkd mutants and contains mvaS and other genes that are directly involved in the alternative pathway. Based on our experiments, we assigned roles to the genes required for the formation of IV-CoA from HMG-CoA. Additionally, several genes involved in outer-membrane biosynthesis and a plethora of genes encoding regulatory proteins were decreased in expression levels in the bkd(-) mutant; this explains the complex phenotype of bkd mutants including a lack of adhesion in developmental submerse culture.
Collapse
Affiliation(s)
- Helge B Bode
- Institut für Pharmazeutische Biotechnologie, Universität des Saarlandes, Saarbrücken, Germany
| | | | | | | | | | | | | | | |
Collapse
|
18
|
The evolution of gene collectives: How natural selection drives chemical innovation. Proc Natl Acad Sci U S A 2008; 105:4601-8. [PMID: 18216259 DOI: 10.1073/pnas.0709132105] [Citation(s) in RCA: 208] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA sequencing has become central to the study of evolution. Comparing the sequences of individual genes from a variety of organisms has revolutionized our understanding of how single genes evolve, but the challenge of analyzing polygenic phenotypes has complicated efforts to study how genes evolve when they are part of a group that functions collectively. We suggest that biosynthetic gene clusters from microbes are ideal candidates for the evolutionary study of gene collectives; these selfish genetic elements evolve rapidly, they usually comprise a complete pathway, and they have a phenotype-a small molecule-that is easy to identify and assay. Because these elements are transferred horizontally as well as vertically, they also provide an opportunity to study the effects of horizontal transmission on gene evolution. We discuss known examples to begin addressing two fundamental questions about the evolution of biosynthetic gene clusters: How do they propagate by horizontal transfer? How do they change to create new molecules?
Collapse
|
19
|
Menche D. New methods for stereochemical determination of complex polyketides: configurational assignment of novel metabolites from myxobacteria. Nat Prod Rep 2008; 25:905-18. [DOI: 10.1039/b707989n] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
20
|
Rachid S, Gerth K, Kochems I, Müller R. Deciphering regulatory mechanisms for secondary metabolite production in the myxobacterium Sorangium cellulosum So ce56. Mol Microbiol 2007; 63:1783-96. [PMID: 17367395 DOI: 10.1111/j.1365-2958.2007.05627.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Sorangium cellulosum strains produce approximately 50% of the biologically active secondary metabolites known from myxobacteria. These metabolites include several compounds of biotechnological importance such as the epothilones and chivosazols, which, respectively, stabilize the tubulin and actin skeletons of eukaryotic cells. S. cellulosum is characterized by its slow growth rate, and natural products are typically produced in low yield. In this study, biomagnetic bead separation of promoter-binding proteins and subsequent inactivation experiments were employed to identify the chivosazol regulator, ChiR, as a positive regulator of chivosazol biosynthesis in the genome-sequenced strain So ce56. Overexpression of chiR under the control of T7A1 promoter in a merodiploid mutant resulted in fivefold overproduction of chivosazol in a kinetic shake flask experiment, and 2.5-fold overproduction by fermentation. Using quantitative reverse transcription PCR and gel shift experiments employing heterologously expressed ChiR, we have shown that transcription of the chivosazol biosynthetic genes (chiA-chiF) is directly controlled by this protein. In addition, we have demonstrated that ChiR serves as a pleiotropic regulator in S. cellulosum, because mutant strains lack the ability to develop into regular fruiting bodies.
Collapse
Affiliation(s)
- Shwan Rachid
- Pharmaceutical Biotechnology, Saarland University, 66041 Saarbrücken, Germany
| | | | | | | |
Collapse
|
21
|
|
22
|
Bode HB, Ring MW, Schwär G, Kroppenstedt RM, Kaiser D, Müller R. 3-Hydroxy-3-methylglutaryl-coenzyme A (CoA) synthase is involved in biosynthesis of isovaleryl-CoA in the myxobacterium Myxococcus xanthus during fruiting body formation. J Bacteriol 2006; 188:6524-8. [PMID: 16952943 PMCID: PMC1595499 DOI: 10.1128/jb.00825-06] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Isovaleryl-coenzyme A (IV-CoA) is the starting unit for some secondary metabolites and iso-odd fatty acids in several bacteria. According to textbook biochemistry, IV-CoA is derived from leucine degradation, but recently an alternative pathway that branches from the well-known mevalonate-dependent isoprenoid biosynthesis has been described for myxobacteria. A double mutant was constructed in Myxococcus xanthus by deletion of genes involved in leucine degradation and disruption of mvaS encoding the 3-hydroxy-3-methylglutaryl-coenzyme A synthase. A dramatic decrease of IV-CoA-derived iso-odd fatty acids was observed for the mutant, confirming mvaS to be involved in the alternative pathway. Additional quantitative real-time reverse transcription-PCR experiments indicated that mvaS is transcriptionally regulated by isovalerate. Furthermore, feeding studies employing an intermediate specific for the alternative pathway revealed that this pathway is induced during fruiting body formation, which presumably increases the amount of IV-CoA available when leucine is limited.
Collapse
Affiliation(s)
- Helge B Bode
- Institut für Pharmazeutische Biotechnologie, Universität des Saarlandes, P.O. Box 151150, 66041 Saarbrücken, Germany.
| | | | | | | | | | | |
Collapse
|
23
|
Bode HB, Müller R. Analysis of myxobacterial secondary metabolism goes molecular. J Ind Microbiol Biotechnol 2006; 33:577-88. [PMID: 16491362 DOI: 10.1007/s10295-006-0082-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Accepted: 01/10/2006] [Indexed: 10/25/2022]
Abstract
During the last 20 years myxobacteria have made their way from highly exotic organisms to one of the major sources of microbial secondary metabolites besides actinomycetes and fungi. The pharmaceutical interest in these peculiar prokaryotes lies in their ability to produce a variety of structurally unique compounds and/or metabolites with rare biological activities. This review deals with the recent progress toward a better understanding of the biology, the genetics, the biochemistry and the regulation of secondary metabolite biosynthesis in myxobacteria. These research efforts paved the way to sophisticated in vitro studies and to the heterologous expression of complete biosynthetic pathways in conjunction with their targeted manipulation. The progress made is a prerequisite for using the vast resource of myxobacterial diversity regarding secondary metabolism more efficiently in the future.
Collapse
Affiliation(s)
- Helge B Bode
- Pharmaceutical Biotechnology, Saarland University, P.O. Box 151150, 66041 Saarbrücken, Germany
| | | |
Collapse
|
24
|
Wenzel SC, Müller R. Formation of novel secondary metabolites by bacterial multimodular assembly lines: deviations from textbook biosynthetic logic. Curr Opin Chem Biol 2006; 9:447-58. [PMID: 16107321 DOI: 10.1016/j.cbpa.2005.08.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2005] [Accepted: 08/03/2005] [Indexed: 11/30/2022]
Abstract
Microorganisms produce an immense variety of natural products with useful biological activities. These compounds are often biosynthesized by multifunctional megasynthetases known as polyketide synthases and nonribosomal peptide synthetases. Recent literature on these natural product assembly lines suggests that they have a much greater mechanistic diversity than originally anticipated.
Collapse
Affiliation(s)
- Silke C Wenzel
- Pharmaceutical Biotechnology, Saarland University, PO Box 151150, 66041 Saarbrücken, Germany
| | | |
Collapse
|
25
|
Affiliation(s)
- Zhong Jin
- Institute of Elemento-Organic Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, PR China.
| |
Collapse
|