1
|
Lamas I, Montero R, Martínez-Martínez V, Longarte A. Photodynamics of azaindoles in polar media: the influence of the environment. Phys Chem Chem Phys 2024; 26:3240-3252. [PMID: 38193884 DOI: 10.1039/d3cp03412g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
We have studied the relaxation dynamics of a family of azaindole (AI) structural isomers, 4-, 5-, 6- and 7-AI, by steady-state and time-resolved methods (fs-transient absorption and fluorescence up-conversion), in solvents of different polarity. The measurements in aprotic solvents show distinctive fluorescence yields and excited state lifetimes among the isomers, which are tuned by the polarity of the medium. Guided by simple TD-DFT calculations and based on the behavior observed in the isolated species, it has been possible to address the influence of the environment polarity on the relaxation route. According to the obtained picture, the energy of the nπ* state, which is strongly dependent on the position of the pyridinic nitrogen, controls the rate of the internal conversion channel that accounts for the distinctive photophysical behavior of the isomers. On the other hand, preliminary measurements in protic media (methanol) show a very different photodynamical behavior, in which the anomalous measured fluorescent patterns are very likely the result of reactive channels (proton transfer) triggered by the electronic excitation.
Collapse
Affiliation(s)
- Iker Lamas
- Departamento de Química-Física Facultad de Ciencia y Tecnología. Universidad del País Vasco (UPV/EHU) Apart. 644, 48080 Bilbao, Spain.
| | - Raúl Montero
- SGIKER Laser Facility Facultad de Ciencia y Tecnología. Universidad del País Vasco (UPV/EHU) 48940, Leioa, Spain.
| | - Virginia Martínez-Martínez
- Departamento de Química-Física Facultad de Ciencia y Tecnología. Universidad del País Vasco (UPV/EHU) Apart. 644, 48080 Bilbao, Spain.
| | - Asier Longarte
- Departamento de Química-Física Facultad de Ciencia y Tecnología. Universidad del País Vasco (UPV/EHU) Apart. 644, 48080 Bilbao, Spain.
| |
Collapse
|
2
|
Marsili E, Olivucci M, Lauvergnat D, Agostini F. Quantum and Quantum-Classical Studies of the Photoisomerization of a Retinal Chromophore Model. J Chem Theory Comput 2020; 16:6032-6048. [PMID: 32931266 DOI: 10.1021/acs.jctc.0c00679] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We report an in-depth analysis of the photo-induced isomerization of the 2-cis-penta-2,4-dieniminium cation: a minimal model of the 11-cis retinal protonated Schiff base chromophore of the dim-light photoreceptor rhodopsin. Based on recently developed three-dimensional potentials parametrized on ab initio multi-state multi-configurational second-order perturbation theory data, we perform quantum-dynamical studies. In addition, simulations based on various quantum-classical methods, among which Tully surface hopping and the coupled-trajectory approach derived from the exact factorization, allow us to validate their performance against vibronic wavepacket propagation and, therefore, a purely quantum treatment. Quantum-dynamics results uncover qualitative differences with respect to the two-dimensional Hahn-Stock potentials, widely used as model potentials for the isomerization of the same chromophore, due to the increased dimensionality and three-mode correlation. Quantum-classical simulations show, instead, that three-dimensional model potentials are capable of capturing a number of features revealed by atomistic simulations and experimental observations. In particular, a recently reported vibrational phase relationship between double-bond torsion and hydrogen-out-of-plane modes critical for rhodopsin isomerization efficiency is correctly reproduced.
Collapse
Affiliation(s)
- Emanuele Marsili
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay 91405, France.,Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Massimo Olivucci
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Via A. Moro 2, I-53100 Siena, Italy.,Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - David Lauvergnat
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay 91405, France
| | - Federica Agostini
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay 91405, France
| |
Collapse
|
3
|
Mai S, González L. Molecular Photochemistry: Recent Developments in Theory. Angew Chem Int Ed Engl 2020; 59:16832-16846. [PMID: 32052547 PMCID: PMC7540682 DOI: 10.1002/anie.201916381] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/12/2020] [Indexed: 12/16/2022]
Abstract
Photochemistry is a fascinating branch of chemistry that is concerned with molecules and light. However, the importance of simulating light-induced processes is reflected also in fields as diverse as biology, material science, and medicine. This Minireview highlights recent progress achieved in theoretical chemistry to calculate electronically excited states of molecules and simulate their photoinduced dynamics, with the aim of reaching experimental accuracy. We focus on emergent methods and give selected examples that illustrate the progress in recent years towards predicting complex electronic structures with strong correlation, calculations on large molecules, describing multichromophoric systems, and simulating non-adiabatic molecular dynamics over long time scales, for molecules in the gas phase or in complex biological environments.
Collapse
Affiliation(s)
- Sebastian Mai
- Photonics InstituteVienna University of TechnologyGusshausstrasse 27–291040ViennaAustria
| | - Leticia González
- Institute of Theoretical ChemistryFaculty of ChemistryUniversity of ViennaWähringer Strasse 171090ViennaAustria
| |
Collapse
|
4
|
Mai S, González L. Molekulare Photochemie: Moderne Entwicklungen in der theoretischen Chemie. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sebastian Mai
- Institut für Photonik Technische Universität Wien Gußhausstraße 27–29 1040 Wien Österreich
| | - Leticia González
- Institut für theoretische Chemie Fakultät für Chemie Universität Wien Währinger Straße 17 1090 Wien Österreich
| |
Collapse
|
5
|
Barata-Morgado R, Sánchez ML, Muñoz-Losa A, Martín ME, Olivares Del Valle FJ, Aguilar MA. How Methylation Modifies the Photophysics of the Native All- trans-Retinal Protonated Schiff Base: A CASPT2/MD Study in Gas Phase and in Methanol. J Phys Chem A 2018; 122:3096-3106. [PMID: 29489369 DOI: 10.1021/acs.jpca.8b00773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A comparison between the free-energy surfaces of the all- trans-retinal protonated Schiff base (RPSB) and its 10-methylated derivative in gas phase and methanol solution is performed at CASSCF//CASSCF and CASPT2//CASSCF levels. Solvent effects were included using the average solvent electrostatic potential from molecular dynamics method. This is a QM/MM (quantum mechanics/molecular mechanics) method that makes use of the mean field approximation. It is found that the methyl group bonded to C10 produces noticeable changes in the solution free-energy profile of the S1 excited state, mainly in the relative stability of the minimum energy conical intersections (MECIs) with respect to the Franck-Condon (FC) point. The conical intersections yielding the 9- cis and 11- cis isomers are stabilized while that yielding the 13- cis isomer is destabilized; in fact, it becomes inaccessible by excitation to S1. Furthermore, the planar S1 minimum is not present in the methylated compound. The solvent notably stabilizes the S2 excited state at the FC geometry. Therefore, if the S2 state has an effect on the photoisomerization dynamics, it must be because it permits the RPSB population to branch around the FC point. All these changes combine to speed up the photoisomerization in the 10-methylated compound with respect to the native compound.
Collapse
Affiliation(s)
- Rute Barata-Morgado
- Área de Química Física , University of Extremadura , Avda. Elvas s/n , Edif. José Ma Viguera Lobo 3a, planta, Badajoz 06006 , Spain
| | - M Luz Sánchez
- Área de Química Física , University of Extremadura , Avda. Elvas s/n , Edif. José Ma Viguera Lobo 3a, planta, Badajoz 06006 , Spain
| | - Aurora Muñoz-Losa
- Dpto. Didáctica de las Ciencias Experimentales y Matemáticas, Facultad de Formación del Profesorado , University of Extremadura , Avda. Universidad s/n , Cáceres 10003 , Spain
| | - M Elena Martín
- Área de Química Física , University of Extremadura , Avda. Elvas s/n , Edif. José Ma Viguera Lobo 3a, planta, Badajoz 06006 , Spain
| | - Francisco J Olivares Del Valle
- Área de Química Física , University of Extremadura , Avda. Elvas s/n , Edif. José Ma Viguera Lobo 3a, planta, Badajoz 06006 , Spain
| | - Manuel A Aguilar
- Área de Química Física , University of Extremadura , Avda. Elvas s/n , Edif. José Ma Viguera Lobo 3a, planta, Badajoz 06006 , Spain
| |
Collapse
|
6
|
Szefczyk B, Grabarek D, Walczak E, Andruniów T. Excited-state minima and emission energies of retinal chromophore analogues: Performance of CASSCF and CC2 methods as compared with CASPT2. J Comput Chem 2017; 38:1799-1810. [PMID: 28512740 DOI: 10.1002/jcc.24821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/10/2017] [Accepted: 04/13/2017] [Indexed: 11/08/2022]
Abstract
This study provides gas-phase S1 excited-state geometries along with emission and adiabatic energies for methylated/demethylated and ring-locked analogues of protonated Schiff base retinal models comprising system of five conjugated double bonds (PSB5), using second order multiconfiguration perturbation theory (CASPT2). CASPT2 results serve as reference data to assess the performance of CC2 (second-order approximate coupled cluster singles and doubles) and a commonly used CASSCF/CASPT2 protocol, that is, complete active space self-consistent field (CASSCF) geometry optimization followed by CASPT2 energy calculation. We find that the CASSCF methodology fails to locate planar S1 minimum energy structures for four out of five investigated planar models in contrast to CC2 and CASPT2 methods. However, for those which were found: one planar and two twisted minima, there is an excellent agreement between CASSCF and CASPT2 results in terms of geometrical parameters, one-electron properties, as well as emission and adiabatic energies. CC2 performs well for in-plane S1 minima and their spectroscopic and electronic properties. However, this picture deteriorates for twisted minima. As expected, the CC2 description of the S2 electronic state, with strong multireference and significant double excitation character, is very poor, exhibiting errors in transition energies exceeding 1 eV. They may be substantially diminished by recalculating transition energies with CASPT2 method. Our work shows that CASSCF/CASPT2 and CC2 shortcomings may influence gas-phase retinal analogues' excited state description in a dramatic way. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Borys Szefczyk
- Advanced Materials Engineering and Modelling Group, Department of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, Wroclaw, 50-370, Poland
| | - Dawid Grabarek
- Advanced Materials Engineering and Modelling Group, Department of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, Wroclaw, 50-370, Poland
| | - Elżbieta Walczak
- Advanced Materials Engineering and Modelling Group, Department of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, Wroclaw, 50-370, Poland
| | - Tadeusz Andruniów
- Advanced Materials Engineering and Modelling Group, Department of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, Wroclaw, 50-370, Poland
| |
Collapse
|
7
|
Mališ M, Novak J, Zgrablić G, Parmigiani F, Došlić N. Mechanism of ultrafast non-reactive deactivation of the retinal chromophore in non-polar solvents. Phys Chem Chem Phys 2017; 19:25970-25978. [DOI: 10.1039/c7cp03293e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Counterion sensitive photodynamics of the retinal chromophore in solution.
Collapse
Affiliation(s)
- M. Mališ
- Department of Physical Chemistry
- Ruđer Bošković Institute
- 10000 Zagreb
- Croatia
- Centre Européen de Calcul Atomique et Moléculaire
| | - J. Novak
- Department of Physical Chemistry
- Ruđer Bošković Institute
- 10000 Zagreb
- Croatia
| | - G. Zgrablić
- Elettra-Sincrotrone Treste
- T-ReX Laboratory
- Trieste
- Italy
- Politehnika Pula
| | - F. Parmigiani
- Elettra-Sincrotrone Treste
- T-ReX Laboratory
- Trieste
- Italy
- Department of Physics
| | - N. Došlić
- Department of Physical Chemistry
- Ruđer Bošković Institute
- 10000 Zagreb
- Croatia
| |
Collapse
|
8
|
Iyer ESS, Misra R, Maity A, Liubashevski O, Sudo Y, Sheves M, Ruhman S. Temperature Independence of Ultrafast Photoisomerization in Thermophilic Rhodopsin: Assessment versus Other Microbial Proton Pumps. J Am Chem Soc 2016; 138:12401-7. [DOI: 10.1021/jacs.6b05002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Ramprasad Misra
- Department
of Organic Chemistry, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Arnab Maity
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Oleg Liubashevski
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Yuki Sudo
- Division
of Pharmaceutical sciences, Okayama University, Kita-Ku, Okayama 700-0082, Japan
| | - Mordechai Sheves
- Department
of Organic Chemistry, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sanford Ruhman
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| |
Collapse
|
9
|
Paolino M, Gueye M, Pieri E, Manathunga M, Fusi S, Cappelli A, Latterini L, Pannacci D, Filatov M, Léonard J, Olivucci M. Design, Synthesis, and Dynamics of a Green Fluorescent Protein Fluorophore Mimic with an Ultrafast Switching Function. J Am Chem Soc 2016; 138:9807-25. [DOI: 10.1021/jacs.5b10812] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Marco Paolino
- Dipartimento di Biotecnologie, Chimica
e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Moussa Gueye
- Institut de Physique et Chimie des Matériaux de Strasbourg & Labex NIE, Université de Strasbourg, CNRS UMR 7504, Strasbourg, France
| | - Elisa Pieri
- Dipartimento di Biotecnologie, Chimica
e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Madushanka Manathunga
- Chemistry Department, Bowling Green State University, Bowling
Green, Ohio, United States
| | - Stefania Fusi
- Dipartimento di Biotecnologie, Chimica
e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Andrea Cappelli
- Dipartimento di Biotecnologie, Chimica
e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Loredana Latterini
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce di Sotto, 8, 06123 Perugia, Italy
| | - Danilo Pannacci
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce di Sotto, 8, 06123 Perugia, Italy
| | - Michael Filatov
- Department of Chemistry,
School of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea
| | - Jérémie Léonard
- Institut de Physique et Chimie des Matériaux de Strasbourg & Labex NIE, Université de Strasbourg, CNRS UMR 7504, Strasbourg, France
| | - Massimo Olivucci
- Dipartimento di Biotecnologie, Chimica
e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
- Chemistry Department, Bowling Green State University, Bowling
Green, Ohio, United States
- University of Strasbourg Institute for Advanced Studies, 5, allée du Général
Rouvillois F-67083 Strasbourg, France
| |
Collapse
|
10
|
Polli D, Rivalta I, Nenov A, Weingart O, Garavelli M, Cerullo G. Tracking the primary photoconversion events in rhodopsins by ultrafast optical spectroscopy. Photochem Photobiol Sci 2015; 14:213-28. [DOI: 10.1039/c4pp00370e] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We review the most recent experimental and computational efforts aimed at exposing the very early phases of the ultrafast isomerization in visual Rhodopsins and we discuss future advanced experiments and calculations.
Collapse
Affiliation(s)
- D. Polli
- IFN-CNR
- Dipartimento di Fisica
- Politecnico di Milano
- 20133 Milano
- Italy
| | - I. Rivalta
- Université de Lyon
- CNRS
- Institut de Chimie de Lyon
- École Normale Supérieure de Lyon
- F-69364 Lyon Cedex 07
| | - A. Nenov
- Dipartimento di Chimica “G. Ciamician”
- Università di Bologna
- 40126 Bologna
- Italy
| | - O. Weingart
- Institut für Theoretische Chemie und Computerchemie
- Heinrich-Heine-Universität Düsseldorf
- Universitätsstr. 1
- 40225 Düsseldorf
- Germany
| | - M. Garavelli
- Université de Lyon
- CNRS
- Institut de Chimie de Lyon
- École Normale Supérieure de Lyon
- F-69364 Lyon Cedex 07
| | - G. Cerullo
- IFN-CNR
- Dipartimento di Fisica
- Politecnico di Milano
- 20133 Milano
- Italy
| |
Collapse
|
11
|
Shen A, Zou Y, Wang Q, Dryfe RAW, Huang X, Dou S, Dai L, Wang S. Oxygen Reduction Reaction in a Droplet on Graphite: Direct Evidence that the Edge Is More Active than the Basal Plane. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201406695] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Shen A, Zou Y, Wang Q, Dryfe RAW, Huang X, Dou S, Dai L, Wang S. Oxygen Reduction Reaction in a Droplet on Graphite: Direct Evidence that the Edge Is More Active than the Basal Plane. Angew Chem Int Ed Engl 2014; 53:10804-8. [DOI: 10.1002/anie.201406695] [Citation(s) in RCA: 349] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Indexed: 11/06/2022]
|
13
|
Competition Between Concerted and Stepwise Dynamics in the Triplet Di-π-Methane Rearrangement. Angew Chem Int Ed Engl 2014; 53:8664-7. [DOI: 10.1002/anie.201310237] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Indexed: 11/07/2022]
|
14
|
Jiménez-Osés G, Liu P, Matute RA, Houk KN. Competition Between Concerted and Stepwise Dynamics in the Triplet Di-π-Methane Rearrangement. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201310237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Wand A, Gdor I, Zhu J, Sheves M, Ruhman S. Shedding New Light on Retinal Protein Photochemistry. Annu Rev Phys Chem 2013; 64:437-58. [DOI: 10.1146/annurev-physchem-040412-110148] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Amir Wand
- Institute of Chemistry and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Itay Gdor
- Institute of Chemistry and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Jingyi Zhu
- Institute of Chemistry and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Mordechai Sheves
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sanford Ruhman
- Institute of Chemistry and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| |
Collapse
|
16
|
Kobayashi T. Development of Ultrafast Spectroscopy and Reaction Mechanisms Studied by the Observation of Ultrashort-Life Species and Transition States. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2013. [DOI: 10.1246/bcsj.20120250] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Takayoshi Kobayashi
- Advanced Ultrafast Laser Research Center, The University of Electro-Communications
- JST, CREST
- Department of Electrophysics, National Chiao Tung University
- Institute of Laser Engineering, Osaka University
| |
Collapse
|
17
|
Wand A, Rozin R, Eliash T, Friedman N, Jung KH, Sheves M, Ruhman S. Probing how initial retinal configuration controls photochemical dynamics in retinal proteins. EPJ WEB OF CONFERENCES 2013. [DOI: 10.1051/epjconf/20134107018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Krause P, Matsika S, Kotur M, Weinacht T. The influence of excited state topology on wavepacket delocalization in the relaxation of photoexcited polyatomic molecules. J Chem Phys 2012; 137:22A537. [DOI: 10.1063/1.4748580] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
19
|
Sovdat T, Bassolino G, Liebel M, Schnedermann C, Fletcher SP, Kukura P. Backbone modification of retinal induces protein-like excited state dynamics in solution. J Am Chem Soc 2012; 134:8318-20. [PMID: 22536821 DOI: 10.1021/ja3007929] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The drastically different reactivity of the retinal chromophore in solution compared to the protein environment is poorly understood. Here, we show that the addition of a methyl group to the C═C backbone of all-trans retinal protonated Schiff base accelerates the electronic decay in solution making it comparable to the proton pump bacteriorhodopsin. Contrary to the notion that reaction speed and efficiency are linked, we observe a concomitant 50% reduction in the isomerization yield. Our results demonstrate that minimal synthetic engineering of potential energy surfaces based on theoretical predictions can induce drastic changes in electronic dynamics toward those observed in an evolution-optimized protein pocket.
Collapse
Affiliation(s)
- Tina Sovdat
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, UK
| | | | | | | | | | | |
Collapse
|
20
|
Wand A, Friedman N, Sheves M, Ruhman S. Ultrafast Photochemistry of Light-Adapted and Dark-Adapted Bacteriorhodopsin: Effects of the Initial Retinal Configuration. J Phys Chem B 2012; 116:10444-52. [DOI: 10.1021/jp2125284] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amir Wand
- Institute of Chemistry and the
Farkash Center for Light-Induced Processes, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat
Ram, Jerusalem 91904, Israel
| | - Noga Friedman
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Mordechai Sheves
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sanford Ruhman
- Institute of Chemistry and the
Farkash Center for Light-Induced Processes, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat
Ram, Jerusalem 91904, Israel
| |
Collapse
|
21
|
Blancafort L, Gatti F, Meyer HD. Quantum dynamics study of fulvene double bond photoisomerization: the role of intramolecular vibrational energy redistribution and excitation energy. J Chem Phys 2012; 135:134303. [PMID: 21992301 DOI: 10.1063/1.3643767] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The double bond photoisomerization of fulvene has been studied with quantum dynamics calculations using the multi-configuration time-dependent Hartree method. Fulvene is a test case to develop optical control strategies based on the knowledge of the excited state decay mechanism. The decay takes place on a time scale of several hundred femtoseconds, and the potential energy surface is centered around a conical intersection seam between the ground and excited state. The competition between unreactive decay and photoisomerization depends on the region of the seam accessed during the decay. The dynamics are carried out on a four-dimensional model surface, parametrized from complete active space self-consistent field calculations, that captures the main features of the seam (energy and locus of the seam and associated branching space vectors). Wave packet propagations initiated by single laser pulses of 5-25 fs duration and 1.85-4 eV excitation energy show the principal characteristics of the first 150 fs of the photodynamics. Initially, the excitation energy is transferred to a bond stretching mode that leads the wave packet to the seam, inducing the regeneration of the reactant. The photoisomerization starts after the vibrational energy has flowed from the bond stretching to the torsional mode. In our propagations, intramolecular energy redistribution (IVR) is accelerated for higher excess energies along the bond stretch mode. Thus, the competition between unreactive decay and isomerization depends on the rate of IVR between the bond stretch and torsion coordinates, which in turn depends on the excitation energy. These results set the ground for the development of future optical control strategies.
Collapse
Affiliation(s)
- Lluís Blancafort
- Institut de Química Computacional, Department de Química, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain.
| | | | | |
Collapse
|
22
|
Zgrablić G, Novello AM, Parmigiani F. Population Branching in the Conical Intersection of the Retinal Chromophore Revealed by Multipulse Ultrafast Optical Spectroscopy. J Am Chem Soc 2011; 134:955-61. [DOI: 10.1021/ja205763x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Goran Zgrablić
- T-ReX Laboratory, Sincrotrone Trieste, S.S. 14 km 163.5 in Area Science
Park, I-34012 Basovizza Trieste, Italy
| | - Anna Maria Novello
- T-ReX Laboratory, Sincrotrone Trieste, S.S. 14 km 163.5 in Area Science
Park, I-34012 Basovizza Trieste, Italy
- Department of Condensed Matter
Physics, University of Geneva, Rue du Général-
Dufour 24, 1204 Geneva, Switzerland
| | - Fulvio Parmigiani
- T-ReX Laboratory, Sincrotrone Trieste, S.S. 14 km 163.5 in Area Science
Park, I-34012 Basovizza Trieste, Italy
- Department of Physics, Università degli studi di Trieste, Piazzale
Europa 1, I-34127 Trieste, Italy
| |
Collapse
|
23
|
Wand A, Rozin R, Eliash T, Jung KH, Sheves M, Ruhman S. Asymmetric Toggling of a Natural Photoswitch: Ultrafast Spectroscopy of Anabaena Sensory Rhodopsin. J Am Chem Soc 2011; 133:20922-32. [DOI: 10.1021/ja208371g] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Amir Wand
- Institute of Chemistry and Farkash Center for Light-Induced Processes, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Rinat Rozin
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tamar Eliash
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Kwang-Hwan Jung
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Shinsu-Dong 1, Mapo-Gu, Seoul 121-742, South Korea
| | - Mordechai Sheves
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sanford Ruhman
- Institute of Chemistry and Farkash Center for Light-Induced Processes, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
24
|
Muñoz-Losa A, Martín ME, Galván IF, Sánchez ML, Aguilar MA. Solvent Effects on the Radiative and Nonradiative Decay of a Model of the Rhodopsin Chromophore. J Chem Theory Comput 2011; 7:4050-9. [DOI: 10.1021/ct200295r] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aurora Muñoz-Losa
- Química Física, Universidad de Extremadura, Avda. de Elvas s/n 06071 Badajoz, Spain
| | - M. Elena Martín
- Química Física, Universidad de Extremadura, Avda. de Elvas s/n 06071 Badajoz, Spain
| | - Ignacio Fdez. Galván
- Química Física, Universidad de Extremadura, Avda. de Elvas s/n 06071 Badajoz, Spain
| | - M. Luz Sánchez
- Química Física, Universidad de Extremadura, Avda. de Elvas s/n 06071 Badajoz, Spain
| | - Manuel A. Aguilar
- Química Física, Universidad de Extremadura, Avda. de Elvas s/n 06071 Badajoz, Spain
| |
Collapse
|
25
|
Cui G, Fang W. Ab Initio Trajectory Surface-Hopping Study on Ultrafast Deactivation Process of Thiophene. J Phys Chem A 2011; 115:11544-50. [DOI: 10.1021/jp206893n] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ganglong Cui
- Chemistry College, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Weihai Fang
- Chemistry College, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
26
|
Picconi D, Barone V, Lami A, Santoro F, Improta R. The Interplay between ππ*/nπ* Excited States in Gas-Phase Thymine: A Quantum Dynamical Study. Chemphyschem 2011; 12:1957-68. [DOI: 10.1002/cphc.201001080] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 03/01/2011] [Indexed: 11/10/2022]
|
27
|
Kobayashi T, Yabushita A. Transition-state spectroscopy using ultrashort laser pulses. CHEM REC 2011; 11:99-116. [DOI: 10.1002/tcr.201000018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Indexed: 11/11/2022]
|
28
|
Chung WC, Nanbu S, Ishida T. Nonadiabatic ab Initio Dynamics of a Model Protonated Schiff Base of 9-cis Retinal. J Phys Chem A 2010; 114:8190-201. [DOI: 10.1021/jp103253b] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wilfredo Credo Chung
- Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4, Takano-nishihirakicho, Kyoto 606-8103, Japan
| | - Shinkoh Nanbu
- Department of Materials and Life Sciences, Faculty of Science and Engineering, Sophia University, Chiyodaku Kioicho, Tokyo 102-8554, Japan
| | - Toshimasa Ishida
- Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4, Takano-nishihirakicho, Kyoto 606-8103, Japan
| |
Collapse
|
29
|
Yabushita A, Kobayashi T. Vibrational fine structures revealed by the frequency-to-time fourier transform of the transient spectrum in bacteriorhodopsin. J Phys Chem B 2010; 114:4632-6. [PMID: 20222701 DOI: 10.1021/jp9090014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A vibrational progression that is hidden in a featureless spectrum of induced absorption and stimulated emission was found in time-resolved absorption change spectra. The ultrahigh time resolution of the pump-probe measurement made by using an ultrashort laser pulse localizes the wave packet along the potential multimode hyper surfaces, represented by a vibrational progression. The transition energy of the induced absorption and stimulated emission corresponds to a localized point (space) on the hyper surface, which is visited by the wave packets with fixed phases.
Collapse
Affiliation(s)
- Atsushi Yabushita
- Department of Electrophysics, National Chiao-Tung University, 1001 Ta Hsueh Road, Hsinchu 3005, Taiwan.
| | | |
Collapse
|
30
|
Bismuth O, Komm P, Friedman N, Eliash T, Sheves M, Ruhman S. Deciphering Excited State Evolution in Halorhodopsin with Stimulated Emission Pumping. J Phys Chem B 2010; 114:3046-51. [DOI: 10.1021/jp910853n] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Oshrat Bismuth
- Institute of Chemistry and the Farkas Center for Light Induced Processes, The Hebrew University, Jerusalem 91904, Israel, and Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Pavel Komm
- Institute of Chemistry and the Farkas Center for Light Induced Processes, The Hebrew University, Jerusalem 91904, Israel, and Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Noga Friedman
- Institute of Chemistry and the Farkas Center for Light Induced Processes, The Hebrew University, Jerusalem 91904, Israel, and Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tamar Eliash
- Institute of Chemistry and the Farkas Center for Light Induced Processes, The Hebrew University, Jerusalem 91904, Israel, and Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Mordechai Sheves
- Institute of Chemistry and the Farkas Center for Light Induced Processes, The Hebrew University, Jerusalem 91904, Israel, and Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sanford Ruhman
- Institute of Chemistry and the Farkas Center for Light Induced Processes, The Hebrew University, Jerusalem 91904, Israel, and Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
31
|
Santoro F, Barone V, Improta R. Excited States Decay of the A−T DNA: A PCM/TD-DFT Study in Aqueous Solution of the (9-Methyl-adenine)2·(1-methyl-thymine)2 Stacked Tetramer. J Am Chem Soc 2009; 131:15232-45. [DOI: 10.1021/ja904777h] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- F. Santoro
- Istituto per i Processi Chimico-Fisici - CNR, Area della Ricerca del CNR Via Moruzzi,1 I-56124 Pisa, Italy, Scuola Normale Superiore di Pisa, P.zza dei Cavalieri 7, I-56126 Pisa, Italy, Dipartimento di Chimica and INSTM, Università Federico II, Complesso Monte S. Angelo, via Cintia, I-80126 Napoli, Italy, and Istituto di Biostrutture e Bioimmagini - CNR, Via Mezzocannone 16, I-80134 Napoli, Italy
| | - V. Barone
- Istituto per i Processi Chimico-Fisici - CNR, Area della Ricerca del CNR Via Moruzzi,1 I-56124 Pisa, Italy, Scuola Normale Superiore di Pisa, P.zza dei Cavalieri 7, I-56126 Pisa, Italy, Dipartimento di Chimica and INSTM, Università Federico II, Complesso Monte S. Angelo, via Cintia, I-80126 Napoli, Italy, and Istituto di Biostrutture e Bioimmagini - CNR, Via Mezzocannone 16, I-80134 Napoli, Italy
| | - R. Improta
- Istituto per i Processi Chimico-Fisici - CNR, Area della Ricerca del CNR Via Moruzzi,1 I-56124 Pisa, Italy, Scuola Normale Superiore di Pisa, P.zza dei Cavalieri 7, I-56126 Pisa, Italy, Dipartimento di Chimica and INSTM, Università Federico II, Complesso Monte S. Angelo, via Cintia, I-80126 Napoli, Italy, and Istituto di Biostrutture e Bioimmagini - CNR, Via Mezzocannone 16, I-80134 Napoli, Italy
| |
Collapse
|
32
|
Improta R, Barone V, Lami A, Santoro F. Quantum Dynamics of the Ultrafast ππ*/nπ* Population Transfer in Uracil and 5-Fluoro-Uracil in Water and Acetonitrile. J Phys Chem B 2009; 113:14491-503. [DOI: 10.1021/jp906524p] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Roberto Improta
- Dipartimento di Chimica and INSTM-Village, Universitá Federico II, Complesso Monte S. Angelo, via Cintia, I-80126 Napoli, Italy, Scuola Normale Superiore di Pisa, P.zza dei Cavalieri 7, I-56126 Pisa, Italy, and Istituto per i Processi Chimico-Fisici - CNR, Area della Ricerca del CNR Via Moruzzi,1 I-56124 Pisa, Italy
| | - Vincenzo Barone
- Dipartimento di Chimica and INSTM-Village, Universitá Federico II, Complesso Monte S. Angelo, via Cintia, I-80126 Napoli, Italy, Scuola Normale Superiore di Pisa, P.zza dei Cavalieri 7, I-56126 Pisa, Italy, and Istituto per i Processi Chimico-Fisici - CNR, Area della Ricerca del CNR Via Moruzzi,1 I-56124 Pisa, Italy
| | - Alessandro Lami
- Dipartimento di Chimica and INSTM-Village, Universitá Federico II, Complesso Monte S. Angelo, via Cintia, I-80126 Napoli, Italy, Scuola Normale Superiore di Pisa, P.zza dei Cavalieri 7, I-56126 Pisa, Italy, and Istituto per i Processi Chimico-Fisici - CNR, Area della Ricerca del CNR Via Moruzzi,1 I-56124 Pisa, Italy
| | - Fabrizio Santoro
- Dipartimento di Chimica and INSTM-Village, Universitá Federico II, Complesso Monte S. Angelo, via Cintia, I-80126 Napoli, Italy, Scuola Normale Superiore di Pisa, P.zza dei Cavalieri 7, I-56126 Pisa, Italy, and Istituto per i Processi Chimico-Fisici - CNR, Area della Ricerca del CNR Via Moruzzi,1 I-56124 Pisa, Italy
| |
Collapse
|
33
|
Sumita M, Ryazantsev MN, Saito K. Acceleration of the Z to E photoisomerization of penta-2,4-dieniminium by hydrogen out-of-plane motion: theoretical study on a model system of retinal protonated Schiff base. Phys Chem Chem Phys 2009; 11:6406-14. [PMID: 19809672 DOI: 10.1039/b900882a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the result of comparison between two reaction coordinates [on the potential energy surface of the first excited state (S(1))] produced by CASSCF and these energies recalculated by MRMP2 in the Z to E photoisomerization of penta-2,4-dieniminium (PDI) as the minimal model of the retinal protonated Schiff base (RPSB). One coordinate is the S(1) state minimum-energy-path (MEP) in mass-weighted coordinates from the S(1) vertically excited point, where a strong hydrogen-out-of plane (HOOP) motion is not exhibited. The energy profile of the S(1) MEP at the MRMP2//CASSCF level shows a barrier for the rotation around the reactive C-C and hits the S(1)/S(0) degeneracy space where the central C-C-C-C dihedral angle is distorted by 65 degrees . The other coordinate is an S(1) coordinate obtained by the relaxed scan strategy. The relaxed coordinate along the central C-C-C-C dihedral angle, which we call the HOOP coordinate, shows strong HOOP motion. According to the MRMP2//CASSCF calculation, there is no barrier on the HOOP coordinate. Furthermore, the S(1) to S(0) transition may be possible without the large skeletal deformation by HOOP motion because the HOOP coordinate encounters the S(1)/S(0) degeneracy space where the central C-C-C-C dihedral angle is distorted by only 40 degrees . Consequently, if PDI is a suitable model molecule for the RPSB as often assumed, the 11-cis to all-trans photoisomerization is predicted to be accelerated by the HOOP motion.
Collapse
Affiliation(s)
- Masato Sumita
- Department of Chemistry, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, 305-8571, Japan
| | | | | |
Collapse
|
34
|
Yabushita A, Kobayashi T. Primary conformation change in bacteriorhodopsin on photoexcitation. Biophys J 2009; 96:1447-61. [PMID: 19217861 DOI: 10.1016/j.bpj.2008.10.050] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 10/15/2008] [Indexed: 11/29/2022] Open
Abstract
Ultrafast dynamics of bacteriorhodopsin (bR) has been extensively studied experimentally and theoretically. However, there are several contradictory results reported, indicating that its detailed dynamics and initial process have not yet been fully clarified. In this work, changes in the amplitude and phase of molecular vibration in the isomerization process of bR were real-time probed simultaneously at 128 different wavelengths through intensity modulation of the electronic transition. Systematic information on the transient change in continuous spectrum extending from 505 nm (2.45 eV) to 675 nm (1.84 eV) showed different dynamics in each spectral region reflecting the difference in the excited states and intermediates dominating the dynamics during the photoisomerization. Careful analysis of the transient spectral changes and spectrograms calculated from the vibrational real-time traces elucidated that the primary event just after photoexcitation is the deformation of the retinal configuration, which decays within 30 fs near the C=N bond in the protonated Schiff base. The intensity of C=N stretching mode starts to decrease before the initiation of the frequency modulation of the C=C stretching mode. The C=C stretching mode frequency was modulated by a coupled torsion around the C13=C14 bond, leading to the photoisomerization around the bond. This study clarified the dynamics of the C=N and C=C stretching modes working as key vibration modes in the photoisomerization of bR. Furthermore, we have elucidated the modulation and decay dynamics of the C=C stretching mode in the photoreaction starting from H (Franck-Condon excited state) followed by I (twisted excited), and J (first intermediate) states.
Collapse
Affiliation(s)
- Atsushi Yabushita
- Department of Electrophysics, National Chiao-Tung University, Hsinchu 300, Taiwan.
| | | |
Collapse
|
35
|
Keal TW, Wanko M, Thiel W. Assessment of semiempirical methods for the photoisomerisation of a protonated Schiff base. Theor Chem Acc 2009. [DOI: 10.1007/s00214-009-0546-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Zgrablić G, Haacke S, Chergui M. Heterogeneity and Relaxation Dynamics of the Photoexcited Retinal Schiff Base Cation in Solution. J Phys Chem B 2009; 113:4384-93. [DOI: 10.1021/jp8077216] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Goran Zgrablić
- Ecole Polytechnique Fédérale de Lausanne, Laboratoire de Spectroscopie Ultrarapide, ISIC, Faculté des Sciences de Base, BSP, CH-1015 Lausanne-Dorigny, Switzerland, Sincrotrone Trieste Elettra, S.S. 14 km 163.5 in Area Science Park, 34012 Basovizza, Trieste, Italy, and Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS-ULP, 67034 Strasbourg Cédex, France
| | - Stefan Haacke
- Ecole Polytechnique Fédérale de Lausanne, Laboratoire de Spectroscopie Ultrarapide, ISIC, Faculté des Sciences de Base, BSP, CH-1015 Lausanne-Dorigny, Switzerland, Sincrotrone Trieste Elettra, S.S. 14 km 163.5 in Area Science Park, 34012 Basovizza, Trieste, Italy, and Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS-ULP, 67034 Strasbourg Cédex, France
| | - Majed Chergui
- Ecole Polytechnique Fédérale de Lausanne, Laboratoire de Spectroscopie Ultrarapide, ISIC, Faculté des Sciences de Base, BSP, CH-1015 Lausanne-Dorigny, Switzerland, Sincrotrone Trieste Elettra, S.S. 14 km 163.5 in Area Science Park, 34012 Basovizza, Trieste, Italy, and Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS-ULP, 67034 Strasbourg Cédex, France
| |
Collapse
|
37
|
Santoro F, Improta R, Barone V. Three-dimensional diabatic models for the ππ* → nπ* excited-state decay of uracil derivatives in solution. Theor Chem Acc 2009. [DOI: 10.1007/s00214-009-0527-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
Gustavsson T, Bányász Á, Sarkar N, Markovitsi D, Improta R. Assessing solvent effects on the singlet excited state lifetime of uracil derivatives: A femtosecond fluorescence upconversion study in alcohols and D2O. Chem Phys 2008. [DOI: 10.1016/j.chemphys.2008.02.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
Bismuth O, Friedman N, Sheves M, Ruhman S. Photochemical dynamics of all-trans retinal protonated Schiff-base in solution: Excitation wavelength dependence. Chem Phys 2007. [DOI: 10.1016/j.chemphys.2007.06.052] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Chen X, Batista VS. The MP/SOFT methodology for simulations of quantum dynamics: Model study of the photoisomerization of the retinyl chromophore in visual rhodopsin. J Photochem Photobiol A Chem 2007. [DOI: 10.1016/j.jphotochem.2007.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Bismuth O, Friedman N, Sheves M, Ruhman S. Photochemistry of a Retinal Protonated Schiff-Base Analogue Mimicking the Opsin Shift of Bacteriorhodopsin. J Phys Chem B 2007; 111:2327-34. [PMID: 17298090 DOI: 10.1021/jp0669308] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A retinal Schiff base analogue which artificially mimics the protein-induced red shifting of absorption in bacteriorhodopsin (BR) has been investigated with femtosecond multichannel pump probe spectroscopy. The objective is to determine if the catalysis of retinal internal conversion in the native protein BR, which absorbs at 570 nm, is directly correlated with the protein-induced Stokes shifting of this absorption band otherwise known as the "opsin shift". Results demonstrate that the red shift afforded in the model system does not hasten internal conversion relative to that taking place in a free retinal-protonated Schiff base (RPSB) in methanol solution, and stimulated emission takes place with biexponential kinetics and characteristic timescales of approximately 2 and 10.5 ps. This shows that interactions between the prosthetic group and the protein that lead to the opsin shift in BR are not directly involved in reducing the excited-state lifetime by nearly an order of magnitude. A sub-picosecond phase of spectral evolution, analogues of which are detected in photoexcited retinal proteins and RPSBs in solution, is observed after excitation anywhere within the intense visible absorption band. It consists of a large and discontinuous spectral shift in excited-state absorption and is assigned to electronic relaxation between excited states, a scenario which might also be relevant to those systems as well. Finally, a transient excess bleach component that tunes with the excitation wavelength is detected in the data and tentatively assigned to inhomogeneous broadening in the ground state absorption band. Possible sources of such inhomogeneity and its relevance to native RPSB photochemistry are discussed.
Collapse
Affiliation(s)
- Oshrat Bismuth
- Department of Physical Chemistry, Hebrew University, Jerusalem 91904, Israel
| | | | | | | |
Collapse
|
42
|
Complex excited dynamics around a plateau on a retinal-like potential surface: chaos, multi-exponential decays and quantum/classical differences. Theor Chem Acc 2007. [DOI: 10.1007/s00214-006-0220-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
43
|
|
44
|
|
45
|
Bräse S, Baumann T, Dahmen S, Vogt H. Enantioselective catalytic syntheses of α-branched chiral amines. Chem Commun (Camb) 2007:1881-90. [PMID: 17695218 DOI: 10.1039/b611619a] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Stefan Bräse
- Institut für Organische Chemie, Universität Karlsruhe (TH), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany.
| | | | | | | |
Collapse
|