1
|
Li T, Bandari VK, Schmidt OG. Molecular Electronics: Creating and Bridging Molecular Junctions and Promoting Its Commercialization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209088. [PMID: 36512432 DOI: 10.1002/adma.202209088] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/28/2022] [Indexed: 06/02/2023]
Abstract
Molecular electronics is driven by the dream of expanding Moore's law to the molecular level for next-generation electronics through incorporating individual or ensemble molecules into electronic circuits. For nearly 50 years, numerous efforts have been made to explore the intrinsic properties of molecules and develop diverse fascinating molecular electronic devices with the desired functionalities. The flourishing of molecular electronics is inseparable from the development of various elegant methodologies for creating nanogap electrodes and bridging the nanogap with molecules. This review first focuses on the techniques for making lateral and vertical nanogap electrodes by breaking, narrowing, and fixed modes, and highlights their capabilities, applications, merits, and shortcomings. After summarizing the approaches of growing single molecules or molecular layers on the electrodes, the methods of constructing a complete molecular circuit are comprehensively grouped into three categories: 1) directly bridging one-molecule-electrode component with another electrode, 2) physically bridging two-molecule-electrode components, and 3) chemically bridging two-molecule-electrode components. Finally, the current state of molecular circuit integration and commercialization is discussed and perspectives are provided, hoping to encourage the community to accelerate the realization of fully scalable molecular electronics for a new era of integrated microsystems and applications.
Collapse
Affiliation(s)
- Tianming Li
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09111, Chemnitz, Germany
| | - Vineeth Kumar Bandari
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09111, Chemnitz, Germany
| | - Oliver G Schmidt
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09111, Chemnitz, Germany
- Nanophysics, Dresden University of Technology, 01069, Dresden, Germany
| |
Collapse
|
2
|
Cheng T, Zhu Z, Wang X, Zhu L, Li A, Jiang L, Cao Y. Atomic layer deposition assisted fabrication of large-scale metal nanogaps for surface enhanced Raman scattering. NANOTECHNOLOGY 2023; 34:265301. [PMID: 36996801 DOI: 10.1088/1361-6528/acc8d9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Metal nanogaps can confine electromagnetic field into extremely small volumes, exhibiting strong surface plasmon resonance effect. Therefore, metal nanogaps show great prospects in enhancing light-matter interaction. However, it is still challenging to fabricate large-scale (centimeter scale) nanogaps with precise control of gap size at nanoscale, limiting the practical applications of metal nanogaps. In this work, we proposed a facile and economic strategy to fabricate large-scale sub-10 nm Ag nanogaps by the combination of atomic layer deposition (ALD) and mechanical rolling. The plasmonic nanogaps can be formed in the compacted Ag film by the sacrificial Al2O3deposited via ALD. The size of nanogaps are determined by the twice thickness of Al2O3with nanometric control. Raman results show that SERS activity depends closely on the nanogap size, and 4 nm Ag nanogaps exhibit the best SERS activity. By combining with other porous metal substrates, various sub-10 nm metal nanogaps can be fabricated over large scale. Therefore, this strategy will have significant implications for the preparation of nanogaps and enhanced spectroscopy.
Collapse
Affiliation(s)
- Tangjie Cheng
- Institute of Micro-nano Photonics and Quantum Manipulation, School of Science, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Zebin Zhu
- Institute of Micro-nano Photonics and Quantum Manipulation, School of Science, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Xinxin Wang
- Institute of Micro-nano Photonics and Quantum Manipulation, School of Science, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Lin Zhu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Aidong Li
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Liyong Jiang
- Institute of Micro-nano Photonics and Quantum Manipulation, School of Science, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Yanqiang Cao
- Institute of Micro-nano Photonics and Quantum Manipulation, School of Science, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| |
Collapse
|
3
|
Wang Y, Sadar J, Tsao CW, Mukherjee S, Qing Q. Nanopore chip with self-aligned transverse tunneling junction for DNA detection. Biosens Bioelectron 2021; 193:113552. [PMID: 34416434 DOI: 10.1016/j.bios.2021.113552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/27/2021] [Accepted: 08/05/2021] [Indexed: 10/20/2022]
Abstract
To achieve better signal quality and resolution in nanopore sequencing, there has been strong interest in quantum tunneling based detection which requires integration of tunneling junctions in nanopores. However, there has been very limited success due to precision and reproducibility issues. Here we report a new strategy based on feedback-controlled electrochemical processes in a confined nanoscale space to construct nanopore devices with self-aligned transverse tunneling junctions, all embedded on a nanofluidic chip. We demonstrate high-yield (>93%) correlated detection of translocating DNAs from both the ionic channel and the tunneling junction with enriched event rate. We also observed events attributed to non-translocating DNA making contact with the transverse electrodes. Existing challenges for precise sequencing are discussed, including fast translocation speed, and interference from transient electrostatic signals from fast-moving DNAs. Our work can serve as a first step to provide an accessible, and reproducible platform enabling further optimizations for tunneling-based DNA detection, and potentially sequencing.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Physics, Arizona State University, Tempe, Arizona, 85287, United States
| | - Joshua Sadar
- Department of Physics, Arizona State University, Tempe, Arizona, 85287, United States
| | - Ching-Wei Tsao
- School for Engineering of Matter, Transport & Energy, And Biodesign Institute, Arizona State University, Tempe, Arizona, 85287, United States
| | - Sanjana Mukherjee
- Department of Physics, Arizona State University, Tempe, Arizona, 85287, United States
| | - Quan Qing
- Department of Physics, Arizona State University, Tempe, Arizona, 85287, United States; Biodesign Institute, Arizona State University, Tempe, Arizona, 85287, United States.
| |
Collapse
|
4
|
Yang Y, Gu C, Li J. Sub-5 nm Metal Nanogaps: Physical Properties, Fabrication Methods, and Device Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804177. [PMID: 30589217 DOI: 10.1002/smll.201804177] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/29/2018] [Indexed: 05/26/2023]
Abstract
Sub-5 nm metal nanogaps have attracted widespread attention in physics, chemistry, material sciences, and biology due to their physical properties, including great plasmon-enhanced effects in light-matter interactions and charge tunneling, Coulomb blockade, and the Kondo effect under an electrical stimulus. These properties especially meet the needs of many cutting-edge devices, such as sensing, optical, molecular, and electronic devices. However, fabricating sub-5 nm nanogaps is still challenging at the present, and scaled and reliable fabrication, improved addressability, and multifunction integration are desired for further applications in commercial devices. The aim of this work is to provide a comprehensive overview of sub-5 nm nanogaps and to present recent advancements in metal nanogaps, including their physical properties, fabrication methods, and device applications, with the ultimate aim to further inspire scientists and engineers in their research.
Collapse
Affiliation(s)
- Yang Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Changzhi Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Junjie Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| |
Collapse
|
5
|
Sadar J, Wang Y, Qing Q. Confined Electrochemical Deposition in Sub-15 nm Space for Preparing Nanogap Electrodes. ECS TRANSACTIONS 2017; 77:65-72. [PMID: 29503674 DOI: 10.1149/07707.0065ecst] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Electrode gaps with nanoscale separation offer great promise for molecular electronics and biosensing. Previous electrochemical methods to prepare nanogaps by depositing metal on pre-defined electrode tips have suffered from lack of control in the thickness direction and reproducible control of gap size. Here we report a new process wherein the electrochemical deposition is confined by a cavity to produce a nanogap with thickness smaller even than that of the initial electrodes. Using this process, we demonstrate controlled and reversible electrochemical deposition in a sub-15 nm space, to produce a nano-fluidic channel with finely tunable nanogap control electrodes for biosensing applications.
Collapse
Affiliation(s)
- J Sadar
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| | - Y Wang
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| | - Q Qing
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
- Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
6
|
Xiang D, Wang X, Jia C, Lee T, Guo X. Molecular-Scale Electronics: From Concept to Function. Chem Rev 2016; 116:4318-440. [DOI: 10.1021/acs.chemrev.5b00680] [Citation(s) in RCA: 816] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Dong Xiang
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory for
Structural Chemistry of Unstable and Stable Species, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
- Key
Laboratory of Optical Information Science and Technology, Institute
of Modern Optics, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
| | - Xiaolong Wang
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory for
Structural Chemistry of Unstable and Stable Species, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chuancheng Jia
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory for
Structural Chemistry of Unstable and Stable Species, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| | - Takhee Lee
- Department
of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| | - Xuefeng Guo
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory for
Structural Chemistry of Unstable and Stable Species, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
- Department
of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Highly efficient plastic crystal ionic conductors for solid-state dye-sensitized solar cells. Sci Rep 2013; 3:3520. [PMID: 24343425 PMCID: PMC3865487 DOI: 10.1038/srep03520] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/29/2013] [Indexed: 01/17/2023] Open
Abstract
We have developed highly efficient, ambient temperature, solid-state ionic conductors (SSICs) for dye-sensitized solar cells (DSSCs) by doping a molecular plastic crystal, succinonitrile (SN), with trialkyl-substituted imidazolium iodide salts. High performance SSICs with enhanced ionic conductivity (2–4 mScm−1) were obtained. High performance solid-state DSSCs with power conversion efficiency of 7.8% were fabricated using our SSICs combined with unique hierarchically nanostructured TiO2 sphere (TiO2-SP) photoelectrodes; these electrodes have significant macroporosity, which assists penetration of the solid electrolyte into the electrode. The performance of our solid-state DSSCs is, to the best of our knowledge, the highest reported thus far for cells using plastic crystal-based SSICs, and is comparable to that of the state-of-the-art DSSCs which use ionic liquid type electrolytes. This report provides a logical strategy for the development of efficient plastic crystal-based SSICs for DSSCs and other electrochemical devices.
Collapse
|
8
|
Kobayashi C, Saito M, Homma T. Laterally enhanced growth of electrodeposited Au to form ultrathin films on nonconductive surfaces. Electrochim Acta 2012. [DOI: 10.1016/j.electacta.2012.04.071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Karmakar S, Kumar S, Rinaldi R, Maruccio G. Nano-electronics and spintronics with nanoparticles. ACTA ACUST UNITED AC 2011. [DOI: 10.1088/1742-6596/292/1/012002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Tian X, Li J, Xu D. Nanowire-based nanogap electrodes by annealing of multisegmented Pt/Au/Pt nanowires in air. Electrochem commun 2010. [DOI: 10.1016/j.elecom.2010.05.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
11
|
Abstract
Nanogap electrodes (namely, a pair of electrodes with a nanometer gap) are fundamental building blocks for the fabrication of nanometer-sized devices and circuits. They are also important tools for the examination of material properties at the nanometer scale, even at the molecular scale. In this review, the techniques for the fabrication of nanogap electrodes, the preparation of assembled devices based on the nanogap electrodes, and the potential application of these nanodevices for analysis of material properties are introduced. The history, the research status, and the prospects of nanogap electrodes are also discussed.
Collapse
Affiliation(s)
- Tao Li
- Beijing National Laboratory, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China.
| | | | | |
Collapse
|
12
|
Chen X, Yeganeh S, Qin L, Li S, Xue C, Braunschweig AB, Schatz GC, Ratner MA, Mirkin CA. Chemical fabrication of heterometallic nanogaps for molecular transport junctions. NANO LETTERS 2009; 9:3974-9. [PMID: 19908887 PMCID: PMC3241532 DOI: 10.1021/nl9018726] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We report a simple and reproducible method for fabricating heterometallic nanogaps, which are made of two different metal nanorods separated by a nanometer-sized gap. The method is based upon on-wire lithography, which is a chemically enabled technique used to synthesize a wide variety of nanowire-based structures (e.g., nanogaps and disk arrays). This method can be used to fabricate pairs of metallic electrodes, which exhibit distinct work functions and are separated by gaps as small as 2 nm. Furthermore, we demonstrate that a symmetric thiol-terminated molecule can be assembled into such heterometallic nanogaps to form molecular transport junctions (MTJs) that exhibit molecular diode behavior. Theoretical calculations demonstrate that the coupling strength between gold and sulfur (Au-S) is 2.5 times stronger than that of Pt-S. In addition, the structures form Raman hot spots in the gap, allowing the spectroscopic characterization of the molecules that make up the MTJs.
Collapse
Affiliation(s)
- Xiaodong Chen
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798
| | - Sina Yeganeh
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208
| | - Lidong Qin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208
| | - Shuzhou Li
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208
| | - Can Xue
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798
| | - Adam B. Braunschweig
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208
| | - George C. Schatz
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208
- Corresponding authors (CAM) (MAR) (GCS)
| | - Mark A. Ratner
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208
- Corresponding authors (CAM) (MAR) (GCS)
| | - Chad A. Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208
- Corresponding authors (CAM) (MAR) (GCS)
| |
Collapse
|
13
|
|
14
|
Wachholz F, Duwensee H, Schmidt R, Zwanzig M, Gimsa J, Fiedler S, Flechsig GU. Template-Free Galvanic Nanostructuring of Gold Electrodes for Sensitive Electrochemical Biosensors. ELECTROANAL 2009. [DOI: 10.1002/elan.200904665] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
French R, Collins A, Marken F. Growth and Application of Paired Gold Electrode Junctions: Evidence for Nitrosonium Phosphate During Nitric Oxide Oxidation. ELECTROANAL 2008. [DOI: 10.1002/elan.200804354] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
French RW, Marken F. Growth and characterisation of diffusion junctions between paired gold electrodes: diffusion effects in generator–collector mode. J Solid State Electrochem 2008. [DOI: 10.1007/s10008-008-0698-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Prokopuk N, Son KA. Alligator clips to molecular dimensions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2008; 20:374116. [PMID: 21694423 DOI: 10.1088/0953-8984/20/37/374116] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Techniques for fabricating nanospaced electrodes suitable for studying electron tunneling through metal-molecule-metal junctions are described. In one approach, top contacts are deposited/placed on a self-assembled monolayer or Langmuir-Blodgett film resting on a conducting substrate, the bottom contact. The molecular component serves as a permanent spacer that controls and limits the electrode separations. The top contact can be a thermally deposited metal film, liquid mercury drop, scanning probe tip, metallic wire or particle. Introduction of the top contact can greatly affect the electrical conductance of the intervening molecular film by chemical reaction, exerting pressure, or simply migrating through the organic layer. Alternatively, vacant nanogaps can be fabricated and the molecular component subsequently inserted. Strategies for constructing vacant nanogaps include mechanical break junction, electromigration, shadow mask lithography, focused ion beam deposition, chemical and electrochemical plating techniques, electron-beam lithography, and molecular and atomic rulers. The size of the nanogaps must be small enough to allow the molecule to connect both leads and large enough to keep the molecules in a relaxed and undistorted state. A significant advantage of using vacant nanogaps in the construction of metal-molecule-metal devices is that the junction can be characterized with and without the molecule in place. Any electrical artifacts introduced by the electrode fabrication process are more easily deconvoluted from the intrinsic properties of the molecule.
Collapse
Affiliation(s)
- Nicholas Prokopuk
- NAVAIR Research Department, Chemistry Branch, China Lake, CA 93555-6100, USA
| | | |
Collapse
|
18
|
Caban K. Overpotential deposition of copper on gold micro- and nanoelectrodes. J Solid State Electrochem 2008. [DOI: 10.1007/s10008-008-0603-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Wei D, Liu Y, Cao L, Wang Y, Zhang H, Yu G. Real time and in situ control of the gap size of nanoelectrodes for molecular devices. NANO LETTERS 2008; 8:1625-1630. [PMID: 18498199 DOI: 10.1021/nl080283+] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Molecular electronics is often limited by the lack of a simple method to fabricate nanoelectrodes with controlled gap size. This is partly attributed to the lack of a real time characterization in the fabrication. Here, we report a new method based on an electron induced deposition process operated in scanning electron microscopy that realizes in situ and real time characterization in the nanoelectrode fabrication; thus the gap size can be controlled easily and precisely. It is a clean and nondestructive process for carbon nanotube (CNT) electrodes. The mechanism is detailed. The nanoelectrodes have a pi-conjugated surface due to the deposition of sp(2)-rich amorphous carbon. As an application, DNA molecules are assembled between the CNT electrodes by pi-stacking interaction for current-voltage measurement. Our result provides a feasible route to prepare nanoelectrodes with controlled gap size, and it will be valuable for current efforts in molecular electronics and nanoelectronics.
Collapse
Affiliation(s)
- Dacheng Wei
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, and the Graduate School, Chinese Academy of Sciences, Beijing, PR China
| | | | | | | | | | | |
Collapse
|
20
|
Chen F, Qing Q, Ren L, Tong L, Wu Z, Liu Z. Formation of nanogaps by nanoscale Cu electrodeposition and dissolution. Electrochim Acta 2007. [DOI: 10.1016/j.electacta.2006.11.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|